scholarly journals Spherical Harmonic Spectral Estimation on Arbitrary Grids

2017 ◽  
Vol 145 (8) ◽  
pp. 3355-3363 ◽  
Author(s):  
Nicholas R. Cavanaugh ◽  
Travis A. O’Brien ◽  
William D. Collins ◽  
William C. Skamarock

This study explores the use of nonuniform fast spherical Fourier transforms on meteorological data that are arbitrarily distributed on the sphere. The applicability of this methodology in the atmospheric sciences is demonstrated by estimating spectral coefficients for nontrivial subsets of reanalysis data on a uniformly spaced latitude–longitude grid, a global cloud resolving model on an icosahedral mesh with 3-km horizontal grid spacing, and for temperature anomalies from arbitrarily distributed weather stations over the United States. A spectral correction technique is developed that can be used in conjunction with the inverse transform to yield data interpolated onto a uniformly spaced grid, with optional triangular truncation, at reduced computational cost compared to other variance conserving interpolation methods, such as kriging or natural spline interpolation. The spectral correction yields information that can be used to deduce gridded observational biases not directly available from other methods.

2021 ◽  
pp. 1-19
Author(s):  
Rebecca L. Stewart ◽  
Matthew Westoby ◽  
Francesca Pellicciotti ◽  
Ann Rowan ◽  
Darrel Swift ◽  
...  

Abstract Surface energy-balance models are commonly used in conjunction with satellite thermal imagery to estimate supraglacial debris thickness. Removing the need for local meteorological data in the debris thickness estimation workflow could improve the versatility and spatiotemporal application of debris thickness estimation. We evaluate the use of regional reanalysis data to derive debris thickness for two mountain glaciers using a surface energy-balance model. Results forced using ERA-5 agree with AWS-derived estimates to within 0.01 ± 0.05 m for Miage Glacier, Italy, and 0.01 ± 0.02 m for Khumbu Glacier, Nepal. ERA-5 data were then used to estimate spatiotemporal changes in debris thickness over a ~20-year period for Miage Glacier, Khumbu Glacier and Haut Glacier d'Arolla, Switzerland. We observe significant increases in debris thickness at the terminus for Haut Glacier d'Arolla and at the margins of the expanding debris cover at all glaciers. While simulated debris thickness was underestimated compared to point measurements in areas of thick debris, our approach can reconstruct glacier-scale debris thickness distribution and its temporal evolution over multiple decades. We find significant changes in debris thickness over areas of thin debris, areas susceptible to high ablation rates, where current knowledge of debris evolution is limited.


Időjárás ◽  
2021 ◽  
Vol 125 (2) ◽  
pp. 167-192
Author(s):  
Karolina Szabóné André ◽  
Judit Bartholy ◽  
Rita Pongrácz ◽  
József Bór

Cold air pool (CAP) is a winter-time, anticyclonic weather event: a cold air layer confined by the topography and warm air aloft. If its duration is more than one day, then it is called persistent cold air pool (PCAP). CAPs are mainly examined in small basins and valleys. Fewer studies pay attention to PCAPs in much larger basins (with an area of more than 50 000 km2), and it is not evident how effective the existing numerical definitions are in cases of extensive PCAP events. A possible method of identifying PCAPs in a large basin is to identify PCAP weather conditions at different measuring sites across the basin. If there are PCAP weather conditions at most of the sites, then it is likely to be an extensive PCAP. In this work, we examine which of the documented CAP definitions can be used for reliable local detection of CAP conditions. Daily weather reports and meteorological data from two locations in the 52 000 km2 sized Great Hungarian Plain have been used to obtain a reference set of days with PCAP weather conditions during two consecutive winter months. Several numerical CAP definitions were compared for their performance in recognizing the presence of PCAP weather conditions using radiosonde measurements and reanalysis data. The lowest error was produced by using the heat deficit (HD) method. So this is considered the most suitable method for local identification of PCAPs in the Great Hungarian Plain.


2021 ◽  
Author(s):  
Yifan Cheng ◽  
Andrew Newman ◽  
Sean Swenson ◽  
David Lawrence ◽  
Anthony Craig ◽  
...  

<p>Climate-induced changes in snow cover, river flow, and freshwater ecosystems will greatly affect the indigenous groups in the Alaska and Yukon River Basin. To support policy-making on climate adaptation and mitigation for these underrepresented groups, an ongoing interdisciplinary effort is being made to combine Indigenous Knowledge with western science (https://www.colorado.edu/research/arctic-rivers/).</p><p>A foundational component of this project is a high fidelity representation of the aforementioned land surface processes. To this end, we aim to obtain a set of reliable high-resolution parameters for the Community Territory System Model (CTSM) for the continental scale domain of Alaska and the entire Yukon River Basin, which will be used in climate change simulations. CTSM is a complex, physically based state-of-the-science land surface model that includes complex vegetation and canopy representation, a multi-layer snow model, as well as hydrology and frozen soil physics necessary for the representation of streamflow and permafrost. Two modifications to the default CTSM configuration were made. First, we used CTSM that is implemented with hillslope hydrology to better capture the fine-scale hydrologic spatial heterogeneity in complex terrain. Second, we updated the input soil textures and organic carbon in CTSM using the high-resolution SoilGrid dataset.</p><p>In this study, we performed a multi-objective optimization on snow and streamflow metrics using an adaptive surrogate-based modeling optimization (ASMO). ASMO permits optimization of complex land-surface models over large domains through the use of surrogate models to minimize the computational cost of running the full model for every parameter combination. We ran CTSM at a spatial resolution of 1/24<sup>th</sup> degree and a temporal resolution of one hour using the ERA5 reanalysis data as the meteorological forcings. The ERA5 reanalysis data were bias-corrected to account for the orographic effects. We will discuss the ASMO-CTSM coupling workflow, performance characteristics of the optimization (e.g., computational cost, iterations), and comparisons of the default configuration and optimized model performance.</p>


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Hongjie Guo ◽  
Guojun Dai ◽  
Jin Fan ◽  
Yifan Wu ◽  
Fangyao Shen ◽  
...  

This paper develops a mobile sensing system, the first system used in adaptive resolution urban air quality monitoring. In this system, we employ several taxis as sensor carries to collect originalPM2.5data and collect a variety of datasets, including meteorological data, traffic status data, and geographical data in the city. This paper also presents a novel method AG-PCEM (Adaptive Grid-Probabilistic Concentration Estimation Method) to infer thePM2.5concentration for undetected grids using dynamic adaptive grids. We gradually collect the measurements throughout a year using a prototype system in Xiasha District of Hangzhou City, China. Experimental data has verified that the proposed system can achieve good performance in terms of computational cost and accuracy. The computational cost of AG-PCEM is reduced by about 40.2% compared with a static grid method PCEM under the condition of reaching the close accuracy, and the accuracy of AG-PCEM is far superior as widely used artificial neural network (ANN) and Gaussian process (GP), enhanced by 38.8% and 14.6%, respectively. The system can be expanded to wide-range air quality monitor by adjusting the initial grid resolution, and our findings can tell citizens actual air quality and help official management find pollution sources.


2021 ◽  
Author(s):  
Simon C. Scherrer ◽  
Christoph Spirig ◽  
Martin Hirschi ◽  
Felix Maurer ◽  
Sven Kotlarski

<p>The Alpine region has recently experienced several dry summers with negative impacts on the economy, society and ecology. Here, soil water, evapotranspiration and meteorological data from several observational and model-based data sources is used to assess events, trends and drivers of summer drought in Switzerland in the period 1981‒2020. 2003 and 2018 are identified as the driest summers followed by somewhat weaker drought conditions in 2020, 2015 and 2011. We find clear evidence for an increasing summer drying in Switzerland. The observed climatic water balance (-39.2 mm/decade) and 0-1 m soil water from reanalysis (ERA5-Land: -4.7 mm/decade; ERA5: -7.2 mm/decade) show a clear tendency towards summer drying with decreasing trends in most months. Increasing evapotranspiration (potential evapotranspiration: +21.0 mm/decade; ERA5-Land actual evapotranspiration: +15.1 mm/decade) is identified as important driver which scales excellently (+4 to +7%/K) with the observed strong warming of about 2°C. An insignificant decrease in precipitation further enhanced the tendency towards drier conditions. Most simulations of the EURO-CORDEX regional climate model ensemble underestimate the changes in summer drying. They underestimate both, the observed recent summer warming and the small decrease in precipitation. The changes in temperature and precipitation are negatively correlated, i.e. simulations with stronger warming tend to show (weak) decreases in precipitation. However, most simulations and the reanalysis overestimate the correlation between temperature and precipitation and the precipitation-temperature scaling on the interannual time scale. Our results emphasize that the analysis of the regional summer drought evolution and its drivers remains challenging especially with regional climate model data but considerable uncertainties also exist in reanalysis data sets.</p>


2021 ◽  
Author(s):  
AHMET IRVEM ◽  
Mustafa OZBULDU

Abstract Evapotranspiration is an important parameter for hydrological, meteorological and agricultural studies. However, the calculation of actual evapotranspiration is very challenging and costly. Therefore, Potential Evapotranspiration (PET) is typically calculated using meteorological data to calculate actual evapotranspiration. However, it is very difficult to get complete and accurate data from meteorology stations in, rural and mountainous regions. This study examined the availability of the Climate Forecast System Reanalysis (CFSR) reanalysis data set as an alternative to meteorological observation stations in the computation of potential annual and seasonal evapotranspiration. The PET calculations using the CFSR reanalysis dataset for the period 1987-2017 were compared to data observed at 259 weather stations observed in Turkey. As a result of the assessments, it was determined that the seasons in which the CFSR reanalysis data set had the best prediction performance were the winter (C'= 0.76 and PBias = -3.77) and the autumn (C' = 0.75 and PBias = -12.10). The worst performance was observed for the summer season. The performance of the annual prediction was determined as C'= 0.60 and PBias = -15.27. These findings indicate that the results of the PET calculation using the CFSR reanalysis data set are relatively successful for the study area. However, the data should be evaluated with observation data before being used especially in the summer models.


2021 ◽  
Author(s):  
Francisco Bolrão ◽  
Co Tran ◽  
Miguel Lima ◽  
Sheroze Sheriffdeen ◽  
Diogo Rodrigues ◽  
...  

<p>The most pervasive seismic signal recorded on our planet – microseismic ambient noise -results from the coupling of energy between atmosphere, oceans and solid Earth. Because it carries information on ocean waves (source), the microseismic wavefield can be advantageously used to image ocean storms. This imaging is of interest both to climate studies – by extending the record of oceanic activity back into the early instrumental seismic record – and to real-time monitoring – where real-time seismic data can potentially be used to complement the spatially dense but temporally sparse satellite meteorological data.<br>In our work, we develop empirical transfer functions between seismic observations and ocean activity observations, in particular, significant wave height. We employ three different approaches: 1) The approach of Ferretti et al (2013), who compute a seismic significant wave height and invert only for the empirical conversion parameters between oceanic and seismic significant wave heights; 2) The classical approach of Bromirski et al (1999), who computed an empirical transfer function between ground-motion recorded at a coastal seismic station and significant wave height measured at a nearby ocean buoy; and 3) A novel recurrent neural-network (RNN) approach to infer significant wave height from seismic data. <br>We apply the three approaches to seismic and ocean buoy data recorded in the east coast of the United States. All three approaches are able to successfully predict ocean significant wave height from the seismic data. We compare the three approaches in terms of accuracy, computational effort and robustness. In addition, we investigate the regimes where each approach works best.  The results show that the RNN approach is able to predict well the significant wave height recorded at the buoy. The prediction is improved if several nearby seismic stations are used rather than just one. <br>This work is supported by FCT through projects UIDB/50019/2020 – IDL and UTAP-EXPL/EAC/0056/2017 - STORM.</p>


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5566 ◽  
Author(s):  
Qingzhi Zhao ◽  
Xiongwei Ma ◽  
Wanqiang Yao ◽  
Yang Liu ◽  
Zheng Du ◽  
...  

Standardized precipitation evapotranspiration index (SPEI) is an acknowledged drought monitoring index, and the evapotranspiration (ET) used to calculated SPEI is obtained based on the Thornthwaite (TH) model. However, the SPEI calculated based on the TH model is overestimated globally, whereas the more accurate ET derived from the Penman–Monteith (PM) model recommended by the Food and Agriculture Organization of the United Nations is unavailable due to the lack of a large amount of meteorological data at most places. Therefore, how to improve the accuracy of ET calculated by the TH model becomes the focus of this study. Here, a revised TH (RTH) model is proposed using the temperature (T) and precipitable water vapor (PWV) data. The T and PWV data are derived from the reanalysis data and the global navigation satellite system (GNSS) observation, respectively. The initial value of ET for the RTH model is calculated based on the TH model, and the time series of ET residual between the TH and PM models is then obtained. Analyzed results reveal that ET residual is highly correlated with PWV and T, and the correlate coefficient between PWV and ET is −0.66, while that between T and ET for cases of T larger or less than 0 °C are −0.54 and 0.59, respectively. Therefore, a linear model between ET residual and PWV/T is established, and the ET value of the RTH model can be obtained by combining the TH-derived ET and estimated ET residual. Finally, the SPEI calculated based on the RTH model can be obtained and compared with that derived using PM and TH models. Result in the Loess Plateau (LP) region reveals the good performance of the RTH-based SPEI when compared with the TH-based SPEI over the period of 1979–2016. A case analysis in April 2013 over the LP region also indicates the superiority of the RTH-based SPEI at 88 meteorological and 31 GNSS stations when the PM-based SPEI is considered as the reference.


Sign in / Sign up

Export Citation Format

Share Document