scholarly journals Electronic Cigarettes and Oral Health

2021 ◽  
pp. 002203452110021
Author(s):  
R. Holliday ◽  
B.W. Chaffee ◽  
N.S. Jakubovics ◽  
R. Kist ◽  
P.M. Preshaw

Novel nicotine products, particularly electronic cigarettes (e-cigarettes), have become increasingly popular over the past decade. E-cigarettes are sometimes regarded as a less harmful alternative to tobacco smoking, and there is some evidence of their potential role as a smoking cessation aid. However, there are concerns about their health consequences, particularly in users who are not tobacco smokers, and also when used long term. Given the mode of delivery of these products, there is potential for oral health consequences. Over the past few years, there have been an increasing number of studies conducted to explore their oral health effects. In vitro studies have reported a range of cellular effects, but these are much less pronounced than those resulting from exposure to tobacco smoke. Microbiological studies have indicated that e-cigarette users have a distinct microbiome, and there is some indication this may be more pathogenic compared to nonusers. Evidence of oral health effects from clinical trials is still limited, and most studies to date have been small in scale and usually cross-sectional in design. Epidemiological studies highlight concerns over oral dryness, irritation, and gingival diseases. Interpreting data from e-cigarette studies is challenging, given the different populations that have been investigated and the continual emergence of new products. Overall, studies reveal potential oral health harms, underscoring the importance of efforts to reduce use in nonsmokers. However, in smokers who are using e-cigarettes as an aid to help them quit, the benefits of quitting tobacco smoking may outweigh any negative oral health impacts of e-cigarette use, particularly in the short term. Future research is needed to understand the clinical significance of some of the biological changes observed by following different cohorts of users longitudinally in carefully designed clinical studies and pragmatic trials supported by high-quality in vitro studies.

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245471
Author(s):  
Xin Yi Lim ◽  
Terence Yew Chin Tan ◽  
Siti Hajar Muhd Rosli ◽  
Muhammad Nor Farhan Sa’at ◽  
Syazwani Sirdar Ali ◽  
...  

Introduction Hemp (Cannabis sativa subsp. sativa), commonly used for industrial purposes, is now being consumed by the public for various health promoting effects. As popularity of hemp research and claims of beneficial effects rises, a systematic collection of current scientific evidence on hemp’s health effects and pharmacological properties is needed to guide future research, clinical, and policy decision making. Objective To provide an overview and identify the present landscape of hemp research topics, trends, and gaps. Methods A systematic search and analysis strategy according to the preferred reporting items for systematic review and meta-analysis-ScR (PRISMA-ScR) checklist on electronic databases including MEDLINE, OVID (OVFT, APC Journal Club, EBM Reviews), Cochrane Library Central and Clinicaltrials.gov was conducted to include and analyse hemp research articles from 2009 to 2019. Results 65 primary articles (18 clinical, 47 pre-clinical) were reviewed. Several randomised controlled trials showed hempseed pills (in Traditional Chinese Medicine formulation MaZiRenWan) improving spontaneous bowel movement in functional constipation. There was also evidence suggesting benefits in cannabis dependence, epilepsy, and anxiety disorders. Pre-clinically, hemp derivatives showed potential anti-oxidative, anti-hypertensive, anti-inflammatory, anti-diabetic, anti-neuroinflammatory, anti-arthritic, anti-acne, and anti-microbial activities. Renal protective effects and estrogenic properties were also exhibited in vitro. Conclusion Current evidence on hemp-specific interventions are still preliminary, with limited high quality clinical evidence for any specific therapeutic indication. This is mainly due to the wide variation in test item formulation, as the multiple variants of this plant differ in their phytochemical and bioactive compounds. Future empirical research should focus on standardising the hemp plant for pharmaceutical use, and uniformity in experimental designs to strengthen the premise of using hemp in medicine.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 376 ◽  
Author(s):  
David B Warheit

Nanotechnology is an emerging, cross-disciplinary technology designed to create and synthesize new materials at the nanoscale (generally defined as a particle size range of ≤10-9 meters) to generate innovative or altered material properties. The particle properties can be modified to promote different and more flexible applications, resulting in consumer benefits, particularly in medical, cosmetic, and industrial applications. As this applied science matures and flourishes, concerns have arisen regarding potential health effects of exposures to untested materials, as many newly developed products have not been adequately evaluated. Indeed, it is necessary to ensure that societal and commercial advantages are not outweighed by potential human health or environmental disadvantages. Therefore, a variety of international planning activities or research efforts have been proposed or implemented, particularly in the European Union and United States, with the expectation that significant advances will be made in understanding potential hazards related to exposures in the occupational and/or consumer environments. One of the first conclusions reached regarding hazardous effects of nanoparticles stemmed from the findings of early pulmonary toxicology studies, suggesting that lung exposures to ultrafine particles were more toxic than those to larger, fine-sized particles of similar chemistry. This review documents some of the conceptual planning efforts, implementation strategies/activities, and research accomplishments over the past 10 years or so. It also highlights (in this author’s opinion) some shortcomings in the research efforts and accomplishments over the same duration. In general, much progress has been made in developing and implementing environmental, health, and safety research-based protocols for addressing nanosafety issues. However, challenges remain in adequately investigating health effects given 1) many different nanomaterial types, 2) various potential routes of exposure, 3) nanomaterial characterization issues, 4) limitations in research methodologies, such as time-course and dose-response issues, and 5) inadequate in vitro methodologies for in vivo standardized, guideline toxicity testing.


2019 ◽  
Vol 11 (10) ◽  
pp. 1327-1337
Author(s):  
Xin Chen

Nanomaterials (NMs) have wide applications in industrial and household areas, and possibilities of exposure to NMs are increasing, prompting considerable concerns about safety issues related to them. This paper describes the research landscape of nanotoxicity over the past ten years by adopting bibliometric methods. Annual, regional, and institutional distributions, as well as regional/institutional impact of literature on nanotoxicity were analyzed. Both quantitative and citation-based analyses were carried out to reveal the research hotspots. Results showed that cytotoxicity was the most concerned issue in the application of NMs, especially in imaging, diagnosis, and therapy. There were also a large number of studies on ecotoxicity, oxidative stress, apoptosis, genotoxicity, inflammation, and reproductive toxicity caused by NMs. NMs such as Ag, Au, graphene-based materials (GBMs), carbon nanotubes (CNTs), TiO2, SiO2, etc. were the most studied materials. Moreover, a growing number of both in vivo and in vitro studies involving NMs have been carried out in the past ten years. Mammalian models, such as mouse, human and rat, were the most studied models. A Sankey diagram between study types and experimental models showed that in vivo studies exceeded in vitro studies for some well-established animal models. Yet in-depth in vivo studies regarding interactions of NMs within human systems were still essential. With rapid development of nanotechnology, toxic and safety issues on NMs need to be addressed more specifically in future research.


Author(s):  
Navitha Jayakumar ◽  
Michael Chaiton ◽  
Renee Goodwin ◽  
Robert Schwartz ◽  
Shawn O’Connor ◽  
...  

Abstract Introduction The legalization of nonmedical cannabis in 2018 may have important implications for tobacco use in Canada. There is a risk of renormalizing tobacco use with co-use of tobacco and cannabis introducing nontobacco users to tobacco. Co-use is the use of both substances by the same individual at the same time or on different occasions, as well as mixed together. This study assessed the prevalence of co-use and mixing of tobacco and cannabis among Ontario adults and the characteristics of the users. Aims and Methods Data from the 1996 to 2017 cycles of the Centre for Addiction and Mental Health Monitor (n = 4481) were used to examine trends in prevalence and the proportion of Ontario adults co-using and mixing tobacco and cannabis. Logistic regression was used to study associations between user characteristics and co-use and mixing. Results Co-use of cigarettes and cannabis among cannabis users declined from 59.8% in 1996 to 41.7% in 2017. Past-year e-cigarette use was the only predictor of co-use. From 2015 to 2017, 31.1% (95% confidence interval 27.0, 35.9) of Ontario adults who used cannabis reported mixing it with tobacco in the past year. Being white, past-year e-cigarette use, having moderate or high nicotine dependence, and having moderate or high risk for cannabis problems were significant predictors of mixing among cannabis users. Conclusion Given the well-established negative health effects associated with tobacco use, alongside a growing evidence base for negative health effects of cannabis smoking, co-use and mixing could pose a considerable public health concern in the context of legalization. Implications Considerable effort has been expended to reduce tobacco smoking. However, current efforts to reduce tobacco smoking may be diminished since this study found the prevalence of mixing tobacco and cannabis among cannabis users in Ontario to be higher than expected. Mixing tobacco and cannabis may introduce nontobacco smokers to tobacco, exposing them to health risks associated with both cannabis and tobacco smoke. Therefore, there is a need to monitor changes in tobacco use and understanding implications for tobacco control and cessation programs within the changing environment of cannabis legalization in Canada and other jurisdictions.


Author(s):  
Tanwi Trushna ◽  
Amit K. Tripathi ◽  
Sindhuprava Rana ◽  
Rajnarayan R. Tiwari

: Air pollution, especially particulate matter pollution adversely affects human health. A growing pool of evidence has emerged which underscores the potential of individual-level nutritional interventions in attenuating the adverse health impact of exposure to PM2.5. Although controlling emission and reducing the overall levels of air pollution remains the ultimate objective globally, the sustainable achievement of such a target and thus consequent protection of human health will require a substantial amount of time and concerted efforts worldwide. In the meantime, smaller-scale individual-level interventions that can counter the inflammatory or oxidative stress effects triggered by exposure to particulate matter may be utilized to ameliorate the health effects of PM2.5 pollution. One such intervention is incorporation of nutraceuticals in the diet. Here, we present a review of the evidence generated from various in vitro, in vivo and human studies regarding the effects of different anti-inflammatory and antioxidant nutraceuticals in ameliorating the health effects of particulate matter air pollution. The studies discussed in this review suggest that these nutraceuticals when consumed as a part of the diet, or as additional supplementation, can potentially negate the cellular level adverse effects of exposure to particulate pollution. The potential benefits of adopting a non-pharmacological diet-based approach to air pollution-induced disease management have also been discussed. We argue that before a nutraceuticals-based approach can be used for widespread public adoption, further research, especially human clinical trials, is essential to confirm the beneficial action of relevant nutraceuticals and to explore the safe limits of human supplementation and the risk of side effects. Future research should focus on systematically translating bench-based knowledge regarding nutraceuticals gained from in-vitro and in-vivo studies into clinically usable nutritional guidelines.


Author(s):  
Mahdi Vajdi ◽  
Mahdieh Abbasalizad Farhangi

Abstract. The prevalence of obesity has increased substantially over the last several decades and several environmental factors have accelerated this trend. Poly-methoxy flavones (PMFs) exist abundantly in the peels of citrus, and their biological activities have been broadly examined in recent years. Several studies have examined the effects of PMFs on obesity and its-related diseases. This systematic review conducted to focus on the effect of PMFs on obesity and its related conditions management. The PubMed, Google Scholar, Scopus, and Science Direct databases were searched for relevant studies published before November 2020. Out of 1,615 records screened, 16 studies met the study criteria. The range of dosage of PMFs was varied from 10 to 200 mg/kg (5–26 weeks) and 1–100 μmol (2h–8 days) across selected animal and in vitro studies, respectively. The literature reviewed shows that PMFs modulate several biological processes associated with obesity such as lipid and glucose metabolism, inflammation, energy balance, and oxidative stress by different mechanisms. All of the animal studies showed significant positive effects of PMFs on obesity by reducing body weight (e.g. reduced weight gain by 21.04%), insulin resistance, energy expenditure, inhibiting lipogenesis and reduced blood lipids (e.g. reduced total cholesterol by 23.10%, TG by 44.35% and LDL by 34.41%). The results of the reviewed in vitro studies have revealed that treatment with PMFs significantly inhibits lipid accumulation in adipocytes (e.g. reduced lipid accumulation by 55–60%) and 3T3-L1 pre-adipocyte differentiation as well by decreasing the expression of PPARγ and C/EBPα and also reduces the number and size of fat cells and reduced TG content in adipocytes by 45.67% and 23.10% and 16.08% for nobiletin, tangeretin and hesperetin, respectively. Although current evidence supports the use of PMFs as a complementary treatment in obesity, future research is needed to validate this promising treatment modality.


Author(s):  
Selina Cox ◽  
Alicia Sandall ◽  
Leanne Smith ◽  
Megan Rossi ◽  
Kevin Whelan

Abstract Food additive intakes have increased with the increase in “ultra-processed” food consumption. Food additive emulsifiers have received particular research attention in recent years due to preliminary evidence of adverse gastrointestinal and metabolic health effects. In this review, the use of emulsifiers as food additives is discussed, and the current estimations of exposure to, and safety of, emulsifiers are critically assessed. Food additive emulsifier research is complicated by heterogeneity in additives considered to be emulsifiers and labelling of them on foods globally. Major limitations exist in estimating food additive emulsifier exposure, relating predominantly to a lack of available food occurrence and concentration data. Development of brand-specific food additive emulsifier databases are crucial to accurately estimating emulsifier exposure. Current research on the health effects of food additive emulsifiers are limited to in vitro and murine studies and small, acute studies in humans, and future research should focus on controlled human trials of longer duration.


2016 ◽  
Vol 8 (2) ◽  
pp. 100-102 ◽  
Author(s):  
J. Drew Payne ◽  
David Michaels ◽  
Menfil Orellana-Barrios ◽  
Kenneth Nugent

Electronic cigarettes (e-cigarettes) are often advertised as a healthier product when compared with traditional cigarettes. Currently, there are limited data to support this and only a threat of federal regulation from the US Food and Drug Administration. Calls to poison control centers about e-cigarette toxicity, especially in children, and case reports of toxic exposures have increased over the past 3 years. This research letter reports the frequency of hazardous exposures to e-cigarettes and characterizes the reported adverse health effects associated with e-cigarette toxicity.


FACETS ◽  
2017 ◽  
Vol 2 (1) ◽  
pp. 575-609 ◽  
Author(s):  
Alyssa Zucchet ◽  
Grégory Schmaltz

Electronic cigarettes (ECs) are devices that are used recreationally or as smoking cessation tools, and have become increasingly popular in recent years. We conducted a review of the available literature to determine the health effects caused by the use of these devices. A heating element in the EC aerosolizes a solution of propylene glycol, glycerol, nicotine (optional), and flavouring (optional). These compounds are generally harmless on their own. However, upon heating, they produce various carcinogens and irritants. We found that concentrations of these toxicants vary significantly depending on the type of EC device, the type of EC liquid, and the smoking behaviour of the user. Exposure to these vapours can cause inflammation and oxidative damage to in vitro and in vivo cells. EC aerosol can also potentially affect organ systems and especially cardiovascular and lung function. We concluded that EC use causes acute effects on health but not as severe as those of conventional cigarettes (CCs). These devices could, therefore, be of use for smokers of CCs wishing to quit. However, as EC aerosol introduces new toxicants not found in CCs, long-term studies are needed to investigate possible chronic effects associated with EC use.


Sign in / Sign up

Export Citation Format

Share Document