Development of apparatus to evaluate cutting resistance of protective fabrics

2021 ◽  
pp. 004051752199467
Author(s):  
Magdi El Messiry ◽  
Elshiamaa Mohamed Eid

In recent decades, attention has been focused on the design of protective soft fabrics against cutting. The anticipated textiles should shield the wearer's body from threats caused by pointed or sharp-edged objects, such as a knife, sharp blade, or spike. Therefore, as it is of great importance to design slash-resistant fabrics, it is also necessary to have an apparatus that gives the possibility to simulate the conditions of cutting processes of the protective fabric. The main objective of the present work is to develop a new apparatus to test the slash-proof materials used in soft protective armor or gloves. The apparatus can test the material with different cutting angles, different speeds, and various normal forces applied to the sample at the point of contact between the material and the cutting blade, with the capability to change all the parameters affecting the cutting force. This study aims to develop a cutting apparatus to study the cutting mechanism of textile materials with the capability to change all the parameters affecting the cutting force. The cutting angle and cutting speed have a significant effect on the maximum cutting force; however, the latter showed a high decrease of the maximum cutting force.

2013 ◽  
Vol 816-817 ◽  
pp. 206-210 ◽  
Author(s):  
Takashi Inoue ◽  
Masahiro Hagino ◽  
Yuuki Kurita ◽  
Kimitoshi Watanabe ◽  
Kazuya Ueda ◽  
...  

In drilling deep holes with small-diameter tools in particular, chip shape is a major problem along with tool rigidity. In this study, we developed a spindle machine that has regularly repeating acceleration and deceleration regions in each drill rotation (called modulated rotation) as a new drilling spidle machine that can improve chip discharge ability. For an analysis of the cutting mechanism based on the basic principles of this device and its drilling characteristics, holes were drilled in CFRP, and Ti alloy (Ti-6A1-4V) materials using a straight shank drill. The relationship between the torque and thrust of cutting resistance force was obtained to show the relationship between cutting chips shape and cutting force. The characteristics of drilling with the developed spindle device were evaluated in comparison with regular drilling methods. It was found that the torque with this device was reduced by about 10% compared with general drilling. Outstanding chip breakup was seen with Titanium alloys in particular, as a result of which chip discharge could be improved.


2012 ◽  
Vol 271-272 ◽  
pp. 589-593
Author(s):  
Yan Zhou Li ◽  
Qing Zhou ◽  
Wei Wang ◽  
Wei He ◽  
Lin Jun Jiang

In this paper, mainly according to the selection of sugar cane seeds and the quality requirements for cutting, we design a cutting mechanism not only to cut off the sugar cane , but also can ensure the cutting sugarcane planting to achieve the agronomic requirements for sugar cane . The institution's overall ideas are as follows: first,measure different kinds of sugar cane planting in different cutting force and cutting speed in case of broken head.After preliminary analysis,gain cutting force,cutting speed ,the diameter of sugar cane ,the species of sugar cane ,cutting blade edge angle, cutting angle and cutting mode correlation.Then select the power transfer device and the working parts of the disk and blade according to the obtained data.Last design drive of belt wheel, drive shaft, bearing type, bearing cover through calculation and checking.The successful design and development of the institution of sugar cane cutting mechanism will be able to greatly reduce the labor intensity and production costs in the process of sugarcane planting.


2010 ◽  
Vol 34-35 ◽  
pp. 1775-1779
Author(s):  
Yong Chuan Lin ◽  
Yuan Ling Chen

This paper deals with the mach inability of BN free-machining steel in turning with a supplied current of various values and different directions of electrical current. The tested work pieces were, standard steel AISI 1045 and BN added steel (AISI 1045-BN) based AISI 1045 which has good mach inability at high cutting speed. Turning tests were performed by carbide tool P30 and the power source for additional electrical current supply was a direct current source and the maximum electrical current in the circuit was 20milliamperes (mA). To investigate the influence of electrical conditions of closed circuit system on the cutting mechanism of AISI 1045-BN. The tool life, cutting force, and others were determined experimentally. The testing results show that when turning with carbide tool P30 the maximum crater depth in the tool was reduced drastically when the value of supplied current reached 5mA, regardless of its direction of flow, compared with depths at lower current values; the additional electrical current cutting showed smaller cutting force than those of conditions when turning AISI 1045-BN.


Author(s):  
J. Temple Black

Tool materials used in ultramicrotomy are glass, developed by Latta and Hartmann (1) and diamond, introduced by Fernandez-Moran (2). While diamonds produce more good sections per knife edge than glass, they are expensive; require careful mounting and handling; and are time consuming to clean before and after usage, purchase from vendors (3-6 months waiting time), and regrind. Glass offers an easily accessible, inexpensive material ($0.04 per knife) with very high compressive strength (3) that can be employed in microtomy of metals (4) as well as biological materials. When the orthogonal machining process is being studied, glass offers additional advantages. Sections of metal or plastic can be dried down on the rake face, coated with Au-Pd, and examined directly in the SEM with no additional handling (5). Figure 1 shows aluminum chips microtomed with a 75° glass knife at a cutting speed of 1 mm/sec with a depth of cut of 1000 Å lying on the rake face of the knife.


2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


2014 ◽  
Vol 800-801 ◽  
pp. 237-240
Author(s):  
Li Fu Xu ◽  
Ze Liang Wang ◽  
Shu Tao Huang ◽  
Bao Lin Dai

In this paper, the cutting experiment was used to study the influence of various cutting parameters on cutting force when rough turning titanium alloy (TC4) with the whole CBN tool. The results indicate that among the cutting speed, feed rate and cutting depth, the influence of the cutting depth is the most significant on cutting force; the next is the feed rate and the cutting speed is at least.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 326
Author(s):  
Lan Zhang ◽  
Xianbin Sha ◽  
Ming Liu ◽  
Liquan Wang ◽  
Yongyin Pang

In the field of underwater emergency maintenance, submarine pipeline cutting is generally performed by a diamond wire saw. The process, in essence, involves diamond grits distributed on the surface of the beads cutting X56 pipeline steel bit by bit at high speed. To find the effect of the different parameters (cutting speed, coefficient of friction and depth of cut) on cutting force, the finite element (FEA) method and response surface method (RSM) were adopted to obtain cutting force prediction models. The former was based on 64 simulations; the latter was designed according to DoE (Design of Experiments). Confirmation experiments were executed to validate the regression models. The results indicate that most of the prediction errors were within 10%, which were acceptable in engineering. Based on variance analyses of the RSM models, it could be concluded that the depth of the cut played the most important role in determining the cutting force and coefficient the of friction was less influential. Despite making little direct contribution to the cutting force, the cutting speed is not supposed to be high for reducing the coefficient of friction. The cutting force models are instructive in manufacturing the diamond beads by determining the protrusion height of the diamond grits and the future planning of the cutting parameters.


2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Zhenguo Lu ◽  
Lirong Wan ◽  
Qingliang Zeng ◽  
Xin Zhang ◽  
Kuidong Gao

In order to overcome conical pick wear in the traditional rock cutting method, a new cutting method was proposed on account of increasing free surface of the rock. The mechanical model of rock plate bending under concentrated force was established, and the first fracture position was given. The comparison between experimental and numerical results indicated that the numerical method is effective. A computer code LS-DYNA (3D) was employed to study the cutting performance of a conical pick. To study the rock size influenced on the cutting performance, the numerical simulations with different thickness, width, and height of a rock plate was carried out. The numerical simulation with the different cutting parameters of cutting speed, cutting angle, and cutting position influenced on cutting performance was also carried out. The numerical results indicated that the peak force increased with the increasing thickness of rock plate. With the increasing width and height of the rock plate, the peak force decreased and then became stable. Besides, the peak force decreased with the increasing of cutting position lxp/lx. Moreover, the peak force increased and then decreased with the increasing of cutting angle. The cutting speed has nonsignificant influence on the peak force. The strong exponential relationship was obtained between the peak force and cutting position, thickness, height, and width of the rock plate at a confidence level of 0.95. A binomial relationship was observed between the peak force and cutting angel. The cutting force comparison between traditional rock cutting and rock plate cutting indicated that the new cutting method can effectively reduce peak cutting force.


2014 ◽  
Vol 1017 ◽  
pp. 747-752
Author(s):  
Hiromi Isobe ◽  
Keisuke Hara

This paper reports the stress distribution inside the workpiece under ultrasonic vibration cutting (UVC) condition. Many researchers have reported the improvement of tool wear, burr generation and surface integrity by reduction of time-averaged cutting force under UVC condition. However general dynamometers have an insufficient frequency band to observe the processing phenomena caused by UVC. In this paper, stress distribution inside the workpiece during UVC was observed by combining the flash light emission synchronized with ultrasonically vibrating cutting tool and the photoelastic method. Instantaneous stress distribution during UVC condition was observed. Because UVC induced an intermittent cutting condition, the stress distribution changed periodically and disappeared when the tool leaved from the workpiece. It was found that instantaneous maximum cutting force during UVC condition was smaller than quasi-static cutting force during conventional cutting when the cutting speed was less than 500 mm/min.


2021 ◽  
Vol 1038 ◽  
pp. 460-467
Author(s):  
Olga Skorodumova ◽  
Olena Tarakhno ◽  
Olena Chebotaryova ◽  
Dmitriy Saveliev ◽  
Fatih Mehmet Emen

The use of complex fire-retardant coatings based on ethyl silicate gel - diammonium hydrogen phosphate reduces the process of smoke formation during thermal exposure to treated tissue samples, which is promising for improving the fire safety of textile materials. The compositions are easy to obtain, they do not require specific processing conditions, do not contain toxic substances. This allows us to offer developed compositions for fire protection of textile materials used in facilities with a large number of people.


Sign in / Sign up

Export Citation Format

Share Document