scholarly journals Recommendations from the INHAND Apoptosis/Necrosis Working Group

2016 ◽  
Vol 44 (2) ◽  
pp. 173-188 ◽  
Author(s):  
Susan A. Elmore ◽  
Darlene Dixon ◽  
James R. Hailey ◽  
Takanori Harada ◽  
Ronald A. Herbert ◽  
...  

Historically, there has been confusion relating to the diagnostic nomenclature for individual cell death. Toxicologic pathologists have generally used the terms “single cell necrosis” and “apoptosis” interchangeably. Increased research on the mechanisms of cell death in recent years has led to the understanding that apoptosis and necrosis involve different cellular pathways and that these differences can have important implications when considering overall mechanisms of toxicity, and, for these reasons, the separate terms of apoptosis and necrosis should be used whenever differentiation is possible. However, it is also recognized that differentiation of the precise pathway of cell death may not be important, necessary, or possible in routine toxicity studies and so a more general term to indicate cell death is warranted in these situations. Morphological distinction between these two forms of cell death can sometimes be straightforward but can also be challenging. This article provides a brief discussion of the cellular mechanisms and morphological features of apoptosis and necrosis as well as guidance on when the pathologist should use these terms. It provides recommended nomenclature along with diagnostic criteria (in hematoxylin and eosin [H&E]-stained sections) for the most common forms of cell death (apoptosis and necrosis). This document is intended to serve as current guidance for the nomenclature of cell death for the International Harmonization of Nomenclature and Diagnostic Criteria Organ Working Groups and the toxicologic pathology community at large. The specific recommendations are: Use necrosis and apoptosis as separate diagnostic terms. Use modifiers to denote the distribution of necrosis (e.g., necrosis, single cell; necrosis, focal; necrosis, diffuse; etc.). Use the combined term apoptosis/single cell necrosis when There is no requirement or need to split the processes, or When the nature of cell death cannot be determined with certainty, or When both processes are present together. The diagnosis should be based primarily on the morphological features in H&E-stained sections. When needed, additional, special techniques to identify and characterize apoptosis can also be used.

Physiology ◽  
2004 ◽  
Vol 19 (3) ◽  
pp. 124-128 ◽  
Author(s):  
U. Ziegler ◽  
P. Groscurth

Cell death is discriminated into two main forms: apoptosis and necrosis. In contrast to necrosis, apoptosis is a regulated, energy-dependent form of cell death leading to phagocytosis of cellular remnants by neighboring cells. Characteristic morphological features of these two forms of cell death will be discussed and correlated to underlying molecular mechanisms.


2021 ◽  
Vol 22 (13) ◽  
pp. 6785
Author(s):  
Valeria Sogos ◽  
Paola Caria ◽  
Clara Porcedda ◽  
Rafaela Mostallino ◽  
Franca Piras ◽  
...  

Novel psychoactive substances (NPS) are synthetic substances belonging to diverse groups, designed to mimic the effects of scheduled drugs, resulting in altered toxicity and potency. Up to now, information available on the pharmacology and toxicology of these new substances is very limited, posing a considerable challenge for prevention and treatment. The present in vitro study investigated the possible mechanisms of toxicity of two emerging NPS (i) 4′-methyl-alpha-pyrrolidinoexanophenone (3,4-MDPHP), a synthetic cathinone, and (ii) 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA), a phenethylamine. In addition, to apply our model to the class of synthetic opioids, we evaluated the toxicity of fentanyl, as a reference compound for this group of frequently abused substances. To this aim, the in vitro toxic effects of these three compounds were evaluated in dopaminergic-differentiated SH-SY5Y cells. Following 24 h of exposure, all compounds induced a loss of viability, and oxidative stress in a concentration-dependent manner. 2-Cl-4,5-MDMA activates apoptotic processes, while 3,4-MDPHP elicits cell death by necrosis. Fentanyl triggers cell death through both mechanisms. Increased expression levels of pro-apoptotic Bax and caspase 3 activity were observed following 2-Cl-4,5-MDMA and fentanyl, but not 3,4-MDPHP exposure, confirming the different modes of cell death.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1204
Author(s):  
Heike Wanka ◽  
Philipp Lutze ◽  
Alexander Albers ◽  
Janine Golchert ◽  
Doreen Staar ◽  
...  

A stimulated renin-angiotensin system is known to promote oxidative stress, apoptosis, necrosis and fibrosis. Renin transcripts (renin-b; renin-c) encoding a cytosolic renin isoform have been discovered that may in contrast to the commonly known secretory renin (renin-a) exert protective effects Here, we analyzed the effect of renin-a and renin-b overexpression in H9c2 cardiomyoblasts on apoptosis and necrosis as well as on potential mechanisms involved in cell death processes. To mimic ischemic conditions, cells were exposed to glucose starvation, anoxia or combined oxygen–glucose deprivation (OGD) for 24 h. Under OGD, control cells exhibited markedly increased necrotic and apoptotic cell death accompanied by enhanced ROS accumulation, loss of mitochondrial membrane potential and decreased ATP levels. The effects of OGD on necrosis were exaggerated in renin-a cells, but markedly diminished in renin-b cells. However, with respect to apoptosis, the effects of OGD were almost completely abolished in renin-b cells but interestingly also moderately diminished in renin-a cells. Under glucose depletion we found opposing responses between renin-a and renin-b cells; while the rate of necrosis and apoptosis was aggravated in renin-a cells, it was attenuated in renin-b cells. Based on our results, strategies targeting the regulation of cytosolic renin-b as well as the identification of pathways involved in the protective effects of renin-b may be helpful to improve the treatment of ischemia-relevant diseases.


Author(s):  
К.П. Кравченко ◽  
К. Л. Козлов ◽  
А.О. Дробинцева ◽  
Д.С. Медведев ◽  
В.О. Полякова

Для понимания патогенеза дилатационной кардиомиопатии (ДКМП) необходимо установить молекулярно-клеточные механизмы старения миокарда, в том числе связанные с программируемой клеточной гибелью, молекулярные механизмы которого практически не изучены. Цель работы - изучение маркеров апоптоза в кардиомиоцитах у пациентов с ДКМП in vitro. В работе использовали метод первичных диссоциированных клеточных культур и метод иммунофлюоресцентной конфокальной лазерной микроскопии. Для моделирования клеточного старения использовали клетки 3-го и 14-го пассажей, соответствующие «молодым» и «старым» культурам. На молекулярном уровне старение клеток кардиомиоцитов сопровождалось повышением экспрессии р16 в 2 раза по сравнению с «молодыми культурами» как в контрольной, так и в группе с ДКМП. Также установлено, что экспрессия р16 в культурах, взятых от пациентов с патологией, была в 2 раза выше, чем в аналогичных культурах от здоровых пациентов. Экспрессия р21 была повышена в группе с ДКМП по сравнению с контрольной группой, однако при старении культуры экспрессия p21 не изменялась, оставаясь на высоком уровне. Наиболее значимые различия были получены при сравнении экспрессии Bax в культуре клеток кардиомиоцитов из группы с ДКМП в «молодой» культуре с нормой - в 3,2 раза. Старение клеток миокарда на молекулярном уровне проявлялось в повышении экспрессии белка Baх, именно он является запускающим механизмом митохондриального пути апоптоза. Возможно, этот путь клеточной гибели является превалирующем при ДКМП. To understand the pathogenesis of dilated cardiomyopathy (DCMP), it is necessary to establish the molecular-cellular mechanisms of myocardial aging, including those associated with programmed cell death, the molecular mechanisms of which have not been practically studied. The aim of this work is to study markers of apoptosis in cardiomyocytes of patients with DCMP in vitro. We used the method of primary dissociated cell cultures and the method of immunofluorescence confocal laser microscopy. Cells of the 3 and 14 passages, corresponding to «young» and «old» cultures, were used to simulate cellular senescence. Results. At the molecular level, aging of cardiomyocyte cells was accompanied by a twofold increase in the expression of p16 compared to «young cultures» both in the control group and in the group with DCMP. It was also found that the expression of p16 in cultures taken from patients with pathology was 2 times higher than in similar cultures from healthy patients. The expression of p21 was increased in the group with DCMP compared to the control; however, with aging of the culture, the expression of p21 did not change, remaining at a significant level. The most significant differences were obtained when comparing the expression of Bax in the cell culture of cardiomyocytes from the group with DCMP in a «young» culture compared with the norm, 3,2 times. Aging of myocardial cells at the molecular level was manifested in an increase in the expression of the Bax protein, which is the triggering mechanism of the mitochondrial apoptosis pathway. It is possible that this pathway of cell death is prevalent in DCMP.


Author(s):  
Zhennan Fang ◽  
Huiqiang Wei ◽  
Wenfeng Gou ◽  
Leyuan Chen ◽  
Changfen Bi ◽  
...  

Nonapoptotic types of regulated cell death have attracted widespread interest since the discovery that certain forms of cell necrosis can be regulated. In particular, research into cell necroptosis has made significant progress in connection with kidney, inflammatory, degenerative and neoplastic diseases. Inhibitors targeting the critical necroptosis-associated proteins RIPK1/3 and MLKL have been in development for more than a decade. Herein the authors compile a list of the known small-molecule inhibitors of these enzymes and representative structures of compounds co-crystallized with these proteins and put forward some thoughts regarding their future development.


Author(s):  
A. Ide ◽  
C.L.C. Tutt

Acute Lantana camara poisoning in a Boer goat kid is described. The animal was part of a flock of boer goats that was introduced from the Kalahari thornveld, where the plant does not occur, to an area where the plant grew abundantly. At necropsy, the animal was severely icteric, dehydrated and constipated, with hepatosis, distention of the gall-bladder and nephrosis, but no skin lesions. Histopathological findings of the liver confirmed moderate hepatosis with single-cell necrosis and bile stasis. The pathology is consistent with that described in acute Lantana poisoning in cattle, sheep and goats. The absence of photosensitisation may be attributed to relatively mild liver damage, or the rapid course of this toxicosis.


1999 ◽  
Vol 13 (3) ◽  
pp. 485-494 ◽  
Author(s):  
Olivier Meilhac ◽  
Isabelle Escargueil-Blanc ◽  
Jean-Claude Thiers ◽  
Robert Salvayre ◽  
Anne Nègre-Salvayre

1998 ◽  
Vol 275 (6) ◽  
pp. F962-F971 ◽  
Author(s):  
Eckhard Schulze-Lohoff ◽  
Christian Hugo ◽  
Sylvia Rost ◽  
Susanne Arnold ◽  
Angela Gruber ◽  
...  

Mesangial cells undergo cell death both by apoptosis and necrosis during glomerular disease. Since nucleotides are released from injured and destroyed cells in the glomerulus, we examined whether extracellular ATP and its receptors may regulate cell death of cultured mesangial cells. Addition of extracellular ATP (300 μM to 5 mM) to cultured rat mesangial cells for 90 min caused a 5.8-fold increase in DNA fragmentation (terminal deoxynucleotidyl transferase assay) and a 4.2-fold increase in protein levels of the tumor suppressor p53, which is thought to regulate apoptosis. Apoptotic DNA fragmentation was confirmed by the diphenylamine assay and by staining with the DNA-specific fluorochrome Hoechst 33258. The necrotic markers, release of lactate dehydrogenase and uptake of trypan blue, were not positive before 3 h of ATP addition. The effects of ATP on DNA fragmentation and p53 expression were reproduced by the purinergic P2Z/P2X7 receptor agonist, 3′- O-(4-benzoylbenzoyl)-ATP, and inhibited by the P2Z/P2X7 receptor blocker, oxidized ATP. Transcripts encoding the P2Z/P2X7 receptor were expressed by cultured mesangial cells as determined by Northern blot analysis. P2Z/P2X7 receptor-associated pore formation in the plasma membrane was demonstrated by the Lucifer yellow assay. We conclude that activation of P2Z/P2X7 receptors by extracellular ATP causes apoptosis and necrosis of cultured mesangial cells. Activation of purinergic P2Z/P2X7 receptors may play a role in causing death of mesangial cells during glomerular disease.


2021 ◽  
pp. jclinpath-2020-207242
Author(s):  
Brandon Michael Henry ◽  
Isaac Cheruiyot ◽  
Stefanie W Benoit ◽  
Fabian Sanchis-Gomar ◽  
Giuseppe Lippi ◽  
...  

BackgroundThe mechanism by which SARS-CoV-2 triggers cell damage and necrosis are yet to be fully elucidated. We sought to quantify epithelial cell death in patients with COVID-19, with an estimation of relative contributions of apoptosis and necrosis.MethodsBlood samples were collected prospectively from adult patients presenting to the emergency department. Circulating levels of caspase-cleaved (apoptosis) and total cytokeratin 18 (CK-18) (total cell death) were determined using M30 and M65 enzyme assays, respectively. Intact CK-18 (necrosis) was estimated by subtracting M30 levels from M65.ResultsA total of 52 COVID-19 patients and 27 matched sick controls (with respiratory symptoms not due to COVID-19) were enrolled. Compared with sick controls, COVID-19 patients had higher levels of M65 (p = 0.046, total cell death) and M30 (p = 0.0079, apoptosis). Hospitalised COVID-19 patients had higher levels of M65 (p= 0.014) and intact CK-18 (p= 0.004, necrosis) than discharged patients. Intensive care unit (ICU)-admitted COVID-19 patients had higher levels of M65 (p= 0.004), M30 (p= 0.004) and intact CK-18 (p= 0.033) than hospitalised non-ICU admitted patients. In multivariable logistic regression, elevated levels of M65, M30 and intact CK-18 were associated with increased odds of ICU admission (OR=22.05, p=0.014, OR=19.71, p=0.012 and OR=14.12, p=0.016, respectively).ConclusionNecrosis appears to be the main driver of hospitalisation, whereas apoptosis and necrosis appear to drive ICU admission. Elevated levels CK-18 levels are independent predictors of severe disease, and could be useful for risk stratification of COVID-19 patients and in assessment of therapeutic efficacy in early-phase COVID-19 clinical trials.


2021 ◽  
Author(s):  
Changhai (Kevin) Ji

This thesis studied the cytotoxicity of mercuric chloride on human epihelial cells. The three detection techniques were developed to monitor the cytotoxicity of soluble mercuric chloride to human health. Both increased concentration and exposure time resulted in increased DNA damage and cell death. At lower levels death occurred by a mixture of apoptosis and necrosis, while at higher levels cell death occurred primarily by necrosis. This is the first study to demonstrate a deleterious effect of soluble mercuric chloride on human epithelial cells, although mercury has long been known as nephrotoxic and neurotoxic.


Sign in / Sign up

Export Citation Format

Share Document