Limited Role of TP53 and TP53-Related Genes in Myxoid Liposarcoma

1998 ◽  
Vol 84 (5) ◽  
pp. 571-577 ◽  
Author(s):  
Silvana Pilotti ◽  
Cinzia Lavarino ◽  
Alessandra Mezzelani ◽  
Gabriella Della Torre ◽  
Fabiola Minoletti ◽  
...  

Aims Circumstantial evidence suggests that genetic changes may lead to tumor progression within the myxoid liposarcoma tumors (MLTs) carrying non-random chromosomal translocation t(12;16). Methods To address this subject an immunophenotypic analysis, applying antibodies against proteins encoded by TP53, MDM2 and CDK4 genes, complemented by molecular analysis of eight suitable cases, was performed on 104 consecutive cases. Chromosomal translocations were assessed either by cytogenetic analysis or by RT-PCR in 9 suitable cases and chimeric transcripts were found in all cases but two pleomorphic liposarcomas. Results Based on immunophenotyping and tumor site, the case material consisted of three groups. The first one was made up of 92 non-retroperitoneal cases carrying a null p53, mdm2, cdk4 immunophenotype, which remained unchanged over the time of recurrences and along the gamut of histologic subtypes. The second group was represented by five p53+, mdm2-, cdk4- non-retroperitoneal cases, 4 of which were further analysed by PCR-SSCP for p53 mutation. The im-munophenotipic profile of these cases, complemented by the molecular findings, supported a role of TP53 in tumor progression in three high-grade MLTs. The third group, consisting of 7 retroperitoneal cases, showed a heterogeneous immunophenotype, sharing immunophenotypic and molecular features with the well-differentiated/evoluted (dedifferentiated) liposarcoma group. Conclusions TP53 mutations seem to play a role in tumor progression in a few cases of MLTs (2.8%) showing more aggressive histologic characteristics. The unexpected finding that a number of retroperitoneal LMTs display the immunophenotypic profile of the well differentiated/evoluted (dedifferentiated) liposarcomas, deserves further investigation.

2000 ◽  
Vol 18 (5) ◽  
pp. 1135-1135 ◽  
Author(s):  
Amy R. Nelson ◽  
Barbara Fingleton ◽  
Mace L. Rothenberg ◽  
Lynn M. Matrisian

ABSTRACT: Tumor progression is a complex, multistage process by which a normal cell undergoes genetic changes that result in phenotypic alterations and the acquisition of the ability to spread and colonize distant sites in the body. Although many factors regulate malignant tumor growth and spread, interactions between a tumor and its surrounding microenvironment result in the production of important protein products that are crucial to each step of tumor progression. The matrix metalloproteinases (MMPs) are a family of degradative enzymes with clear links to malignancy. These enzymes are associated with tumor cell invasion of the basement membrane and stroma, blood vessel penetration, and metastasis. They have more recently been implicated in primary and metastatic tumor growth and angiogenesis, and they may even have a role in tumor promotion. This review outlines our current understanding of the MMP family, including the association of particular MMPs with malignant phenotypes and the role of MMPs in specific steps of the metastatic cascade. As scientific understanding of the MMPs has advanced, therapeutic strategies that capitalize on blocking the enzymes have rapidly developed. The preclinical and clinical evolution of the synthetic MMP inhibitors (MMPIs) is also examined, with the discussion encompassing important methodologic issues associated with determining clinical efficacy of MMPIs and other novel therapeutic agents.


2018 ◽  
Vol 36 (2) ◽  
pp. 151-159 ◽  
Author(s):  
Alex Thomas John Lee ◽  
Khin Thway ◽  
Paul H. Huang ◽  
Robin Lewis Jones

Liposarcomas are rare malignant tumors of adipocytic differentiation. The classification of liposarcomas into four principal subtypes reflects the distinct clinical behavior, treatment sensitivity, and underlying biology encompassed by these diseases. Increasingly, clinical management decisions and the development of investigational therapeutics are informed by an improved understanding of subtype-specific molecular pathology. Well-differentiated liposarcoma is the most common subtype and is associated with indolent behavior, local recurrence, and insensitivity to radiotherapy and chemotherapy. Dedifferentiated liposarcoma represents focal progression of well-differentiated disease into a more aggressive, metastasizing, and fatal malignancy. Both of these subtypes are characterized by recurrent amplifications within chromosome 12, resulting in the overexpression of disease-driving genes that have been the focus of therapeutic targeting. Myxoid liposarcoma is characterized by a pathognomonic chromosomal translocation that results in an oncogenic fusion protein, whereas pleomorphic liposarcoma is a karyotypically complex and especially poor-prognosis subtype that accounts for less than 10% of liposarcoma diagnoses. A range of novel pharmaceutical agents that aim to target liposarcoma-specific biology are under active investigation and offer hope of adding to the limited available treatment options for recurrent or inoperable disease.


Sarcoma ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Christina Kåbjörn Gustafsson ◽  
Katarina Engström ◽  
Pierre Åman

Liposarcomas are mesenchymal tumors containing variable numbers of lipoblasts or adipocytes. The most common entities, well differentiated/dedifferentiated liposarcoma (WDLS/DDLS) and myxoid/round cell liposarcoma (MLS/RCLS), are both characterized by genetic rearrangements that affect the expression of the transcription factor DDIT3. DDIT3 induces liposarcoma morphology when ectopically expressed in a human fibrosarcoma. The role of DDIT3 in lipomatous tumors is, however, unclear. We have analyzed the expression of DDIT3 in 37 cases of liposarcoma (WDLS/DDLSn= 10, MLS/RCLSn= 16, and pleomorphic liposarcomas (PLS)n= 11) and 11 cases of common benign lipomas. Major cell subpopulations of WDLS/DDLS and MLS/RCLS tumors were found to express DDIT3 or the derived fusion protein, whereas PLS cases showed only a few positive cells. The lipomas contained large subpopulations expressing DDIT3. No correlation between numbers of DDIT3 expressing cells and numbers of lipoblasts/adipocytes was found. In vitro adipogenic treatment of two DDIT3 expressing cell lines induced lipid accumulation in small subpopulations only. Our results suggest a dual, promoting and limiting, role for DDIT3 in the formation of lipoblasts and liposarcoma morphology.


2018 ◽  
Vol 40 (4) ◽  
pp. 261-267 ◽  
Author(s):  
K Tari ◽  
Z Shamsi ◽  
H Reza Ghafari ◽  
A Atashi ◽  
M Shahjahani ◽  
...  

Chronic lymphocytic leukemia (CLL) is increased proliferation of B-cells with peripheral blood and bone marrow involvement, which is usually observed in older people. Genetic mutations, epigenetic changes and miRs play a role in CLL pathogenesis. Del 11q, del l17q, del 6q, trisomy 12, p53 and IgVH mutations are the most important genetic changes in CLL. Deletion of miR-15a and miR-16a can increase bcl2 gene expression, miR-29 and miR-181 deletions decrease the expression of TCL1, and miR-146a deletion prevents tumor metastasis. Epigenetic changes such as hypo- and hypermethylation, ubiquitination, hypo- and hyperacetylation of gene promoters involved in CLL pathogenesis can also play a role in CLL. Expression of CD38 and ZAP70, presence or absence of mutation in IgVH and P53 mutation are among the factors involved in CLL prognosis. Use of monoclonal antibodies against surface markers of B-cells like anti-CD20 as well as tyrosine kinase inhibitors are the most important therapeutic approaches for CLL.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 180
Author(s):  
Christina Mertens ◽  
Matthias Schnetz ◽  
Claudia Rehwald ◽  
Stephan Grein ◽  
Eiman Elwakeel ◽  
...  

Macrophages supply iron to the breast tumor microenvironment by enforced secretion of lipocalin-2 (Lcn-2)-bound iron as well as the increased expression of the iron exporter ferroportin (FPN). We aimed at identifying the contribution of each pathway in supplying iron for the growing tumor, thereby fostering tumor progression. Analyzing the expression profiles of Lcn-2 and FPN using the spontaneous polyoma-middle-T oncogene (PyMT) breast cancer model as well as mining publicly available TCGA (The Cancer Genome Atlas) and GEO Series(GSE) datasets from the Gene Expression Omnibus database (GEO), we found no association between tumor parameters and Lcn-2 or FPN. However, stromal/macrophage-expression of Lcn-2 correlated with tumor onset, lung metastases, and recurrence, whereas FPN did not. While the total iron amount in wildtype and Lcn-2−/− PyMT tumors showed no difference, we observed that tumor-associated macrophages from Lcn-2−/− compared to wildtype tumors stored more iron. In contrast, Lcn-2−/− tumor cells accumulated less iron than their wildtype counterparts, translating into a low migratory and proliferative capacity of Lcn-2−/− tumor cells in a 3D tumor spheroid model in vitro. Our data suggest a pivotal role of Lcn-2 in tumor iron-management, affecting tumor growth. This study underscores the role of iron for tumor progression and the need for a better understanding of iron-targeted therapy approaches.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 241
Author(s):  
Zhiyuan V. Zou ◽  
Kristell Le Gal ◽  
Ahmed E. El Zowalaty ◽  
Lara E. Pehlivanoglu ◽  
Viktor Garellick ◽  
...  

Dietary antioxidants and supplements are widely used to protect against cancer, even though it is now clear that antioxidants can promote tumor progression by helping cancer cells to overcome barriers of oxidative stress. Although recent studies have, in great detail, explored the role of antioxidants in lung and skin tumors driven by RAS and RAF mutations, little is known about the impact of antioxidant supplementation on other cancers, including Wnt-driven tumors originating from the gut. Here, we show that supplementation with the antioxidants N-acetylcysteine (NAC) and vitamin E promotes intestinal tumor progression in the ApcMin mouse model for familial adenomatous polyposis, a hereditary form of colorectal cancer, driven by Wnt signaling. Both antioxidants increased tumor size in early neoplasias and tumor grades in more advanced lesions without any impact on tumor initiation. Importantly, NAC treatment accelerated tumor progression at plasma concentrations comparable to those obtained in human subjects after prescription doses of the drug. These results demonstrate that antioxidants play an important role in the progression of intestinal tumors, which may have implications for patients with or predisposed to colorectal cancer.


2021 ◽  
Vol 22 (11) ◽  
pp. 5711
Author(s):  
Julian Zacharjasz ◽  
Anna M. Mleczko ◽  
Paweł Bąkowski ◽  
Tomasz Piontek ◽  
Kamilla Bąkowska-Żywicka

Knee osteoarthritis (OA) is a degenerative knee joint disease that results from the breakdown of joint cartilage and underlying bone, affecting about 3.3% of the world's population. As OA is a multifactorial disease, the underlying pathological process is closely associated with genetic changes in articular cartilage and bone. Many studies have focused on the role of small noncoding RNAs in OA and identified numbers of microRNAs that play important roles in regulating bone and cartilage homeostasis. The connection between other types of small noncoding RNAs, especially tRNA-derived fragments and knee osteoarthritis is still elusive. The observation that there is limited information about small RNAs different than miRNAs in knee OA was very surprising to us, especially given the fact that tRNA fragments are known to participate in a plethora of human diseases and a portion of them are even more abundant than miRNAs. Inspired by these findings, in this review we have summarized the possible involvement of microRNAs and tRNA-derived fragments in the pathology of knee osteoarthritis.


2021 ◽  
Vol 3 (Supplement_1) ◽  
pp. i19-i19
Author(s):  
Divya Ravi ◽  
Carmen del Genio ◽  
Haider Ghiasuddin ◽  
Arti Gaur

Abstract Glioblastomas (GBM) or Stage IV gliomas, are the most aggressive of primary brain tumors and are associated with high mortality and morbidity. Patients diagnosed with this lethal cancer have a dismal survival rate of 14 months and a 5-year survival rate of 5.6% despite a multimodal therapeutic approach, including surgery, radiation therapy, and chemotherapy. Aberrant lipid metabolism, particularly abnormally active de novo fatty acid synthesis, is recognized to have a key role in tumor progression and chemoresistance in cancers. Previous studies have reported a high expression of fatty acid synthase (FASN) in patient tumors, leading to multiple investigations of FASN inhibition as a treatment strategy. However, none of these have developed as efficacious therapies. Furthermore, when we profiled FASN expression using The Cancer Genome Atlas (TCGA) we determined that high FASN expression in GBM patients did not confer a worse prognosis (HR: 1.06; p-value: 0.51) and was not overexpressed in GBM tumors compared to normal brain. Therefore, we need to reexamine the role of exogenous fatty acid uptake over de novofatty acid synthesis as a potential mechanism for tumor progression. Our study aims to measure and compare fatty acid oxidation (FAO) of endogenous and exogenous fatty acids between GBM patients and healthy controls. Using TCGA, we have identified the overexpression of multiple enzymes involved in mediating the transfer and activation of long-chain fatty acids (LCFA) in GBM tumors compared to normal brain tissue. We are currently conducting metabolic flux studies to (1) assess the biokinetics of LCFA degradation and (2) establish exogenous versus endogenous LCFA preferences between patient-derived primary GBM cells and healthy glial and immune cells during steady state and glucose-deprivation.


Sign in / Sign up

Export Citation Format

Share Document