Cushioning energy absorption of composite layered structures including paper corrugation, paper honeycomb and expandable polyethylene

2019 ◽  
Vol 54 (3) ◽  
pp. 176-191 ◽  
Author(s):  
Yanfeng Guo ◽  
Meijuan Ji ◽  
Yungang Fu ◽  
Dan Pan ◽  
Xingning Wang ◽  
...  

The composite layered structures including paper corrugation, paper honeycomb and expandable polyethylene are innovative structures of cushioning energy absorption, and the compression and impact resistances of the expandable polyethylene can be enhanced by laminating the corrugated paperboard or honeycomb paperboard. This article evaluated the compression performance and cushioning energy absorption of the composite layered structures by the static compression and drop impact compression tests. On one hand, the static compression properties showed that the total energy absorption, energy absorption per unit volume and stroke efficiency of the composite layered structures were all higher than those of expandable polyethylene. The specific energy absorption was enhanced with the increase in compression strain but almost not affected by the compression rate. The specific energy absorption of the composite layered structures including the expandable polyethylene and honeycomb paperboard was greater than those of the expandable polyethylene and corrugated paperboard. The energy absorption efficiency of the composite layered structures including the expandable polyethylene and corrugated paperboard was large for the low compression stress level, yet that of the composite layered structures including the expandable polyethylene and honeycomb paperboard was large for the high compression stress level. On the other hand, the dynamic compression characteristics showed that the peak stress, energy absorption per unit area, energy absorption per unit volume and specific energy absorption of the composite layered structures embodying paper sandwich cores and expandable polyethylene had linear increasing trends with the increase of drop shock energy. At the same drop impact condition, the composite layered structures including the honeycomb paperboard and expandable polyethylene had better cushioning energy absorption, the peak stress decreased by 23.6% on average, the energy absorption efficiency raised by 8.85% on average and the specific energy absorption increased by 18.1% on average than those including the corrugated paperboard and expandable polyethylene. Therefore, the corrugated paperboard and honeycomb paperboard can helpfully improve the cushioning energy absorption of the expandable polyethylene, and the composite layered structures embodying the expandable polyethylene, corrugated paperboard and honeycomb paperboard may hold excellent packaging protection.

Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1579 ◽  
Author(s):  
Yang Yu ◽  
Zhuokun Cao ◽  
Ganfeng Tu ◽  
Yongliang Mu

The energy absorption of different cell structures for closed-cell aluminum foam-filled Al tubes are investigated through quasi-static compression testing. Aluminum foams are fabricated under different pressures, obtaining aluminum foams with different cell sizes. It is found that the deformation of the foam core is close to the overall deformation, and the deformation band is seriously expanded when the cell size is fined, which leads to the increase of interaction. Results confirm that the foam-filled tubes absorb more energy due to the increase of interaction between the foam core and tube wall when the foaming pressure increases. The energy absorption efficiency of foam-filled tubes can reach a maximum value of 90% when the foam core is fabricated under 0.30 MPa, which demonstrates that aluminum foams fabricated under increased pressure give a new way for the applications of foam-filled tubes in the automotive industry.


2011 ◽  
Vol 250-253 ◽  
pp. 3-9 ◽  
Author(s):  
Wei Zhou Zhong ◽  
Xi Cheng Huang ◽  
Zhi Ming Hao ◽  
Ruo Ze Xie ◽  
Gang Chen

The curves of stress versus strain along spruce wood axial, radial and tangential directions are gained by static compression experiments. Moisture content and density of the spruce wood are 12.72% and 413 kg/m3respectively. The results indicate that spruce compression process includes elastic, yield and compaction phases. Failure modes of spruce subjected to axial compression are fiber buckling and wrinkle. And failure modes under radial or tangential compression are wood fiber slippage and delamination. Axial compression yield strength is about nine times as that of radial and tangential compression. Radial and tangential compression yield strengths are almost equal. Energy absorption efficiency and ideality energy absorption efficiency of spruce along different loading directions are analyzed. And theory analytic solution to single wood cell buckling under axial compression is done. The obtained expression shows that the mean limit loading is relative to yield stress, cell structure dimension and wrinkle length for complete wrinkle cases.


1987 ◽  
Vol 109 (1) ◽  
pp. 72-77 ◽  
Author(s):  
D. W. Schmueser ◽  
L. E. Wickliffe

This paper presents the results of an impact testing program that was conducted to characterize the energy absorption and failure characteristics of selected composite material systems and to compare the results with aluminum and steel. Composite tube specimens were constructed using graphite/epoxy (Gr/Ep), Kevlar/epoxy (K/Ep), and glass/epoxy (Gl/Ep) prepreg tape and were autoclave cured. Vertical impact and static compression tests were performed on 56 tubes. Tests results for energy absorption varied significantly as a function of lay-up angle and material type. In general, the Gr/Ep tubes had specific energy absorption values that were greater than those for K/Ep and Gl/Ep tubes having the same ply construction. Angle-ply Gr/Ep and K/Ep tubes had specific energy absorption values that were greater than those for 1024 steel tubes. Gr/Ep and Gl/Ep angle-ply tubes exhibited brittle failure modes consisting of fiber splitting and ply delamination, whereas the K/Ep angle-ply tubes collapsed in an accordian buckling mode similar to that obtained for metal tubes.


Author(s):  
Alireza Ahmadi ◽  
Masoud Asgari

Thin-walled structures are of much interest as energy absorption devices for their great crashworthiness and also low weight. Conical tubes are favorable structures because unlike most other geometries, they are also useful in oblique impacts. This paper investigated the effect of corrugations on energy absorption characteristics of conical tubes under quasi-static axial and oblique loadings. To do so, conical tubes with different corrugation geometries were analyzed using the finite element explicit code and the effects of corrugations on initial peak crushing force and specific energy absorption were studied. The finite element model was validated by experimental quasi-static compression tests on simple and corrugated aluminum cylinders. An efficient analytical solution for EA during axial loading was also derived and compared with the FEM solution. The crushing stableness was analyzed using the undulation of the load-carrying capacity parameter and it was shown that corrugations made collapsing mode, more predictable and controllable. The findings have shown that corrugated conical tubes have much better energy absorption characteristics compared with their non-corrugated counterparts. It was also discovered that during oblique loadings, introducing corrugations can significantly increase the specific energy absorption compared with simple cones.


2015 ◽  
Vol 778 ◽  
pp. 18-23
Author(s):  
Jing Hui Zhao ◽  
Jian Feng Wang ◽  
Tao Liu ◽  
Na Yang ◽  
Wen Jie Duan ◽  
...  

Aluminum honeycomb is a lightweight material with high strength and strong capacity of energy absorption. In order to research energy absorption characteristic of aluminum honeycomb material, quasi-static and dynamic out-of-plane compression experiments are carried out on a double-layer aluminum honeycomb impact attenuator of one FSAE racing car. Plateau stress (PS), specific load (SL), mass specific energy absorption (MSEA), volume specific energy absorption (VSEA) and other parameters of the tested aluminum honeycomb under both quasi-static and dynamic impact conditions are analyzed. The results show that the tested aluminum honeycomb impact attenuator has good energy absorption capacity to meet the collision requirements. Furthermore, under the condition of dynamic impact, the energy absorption capacity of this honeycomb improves compared with that under the condition of quasi static compression.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 315
Author(s):  
Ivana Bunjan ◽  
Krešimir Grilec ◽  
Danko Ćorić

In this study, aluminum foams reinforced with different steel elements were produced by the AluLight process. The master alloy AlMgSi0.6 was used as the matrix material, titanium hydride (TiH2) powder was used as a foaming agent, and steel wire, cylindrical steel mesh and flat steel mesh were used as reinforcing elements. Reinforcements were placed inside the mold, along with the precursors, and samples were manufactured by gas releasing particles in a semi-solid state. To examine the effect of the reinforcements on specific energy absorption, quasi-static uniaxial compression tests were carried out, with a constant separation rate of 1 mm/s. From the tested results, the energy absorption per unit volume and specific energy absorption efficiency were calculated and then also statistically evaluated. The results showed that examined shapes of reinforcements affect differently specific energy absorption and its efficiency, compared to non-reinforced aluminum foams. The best result obtained was with cylindrically shaped steel mesh.


2019 ◽  
Vol 794 ◽  
pp. 202-207
Author(s):  
Rafea Dakhil Hussein ◽  
Dong Ruan ◽  
Guo Xing Lu ◽  
Jeong Whan Yoon ◽  
Zhan Yuan Gao

Carbon fibre composite tubes have high strength to weight ratios and outstanding performance under axial crushing. In this paper, square CFRP tubes and aluminium sheet-wrapped CFRP tubes were impacted by a drop mass to investigate the effect of loading velocity on the energy absorption of CFRP/aluminium tubes. A comparison of the quasi-static and dynamic crushing behaviours of tubes was made in terms of deformation mode, peak crushing force, mean crushing force, energy absorption and specific energy absorption. The influence of the number of aluminium layers that wrapped square CFRP tubes on the crushing performance of tubes under axial impact was also examined. Experimental results manifested similar deformation modes of tubes in both quasi-static and dynamic tests. The dynamic peak crushing force was higher than the quasi-static counterpart, while mean crushing force, energy absorption and specific energy absorption were lower in dynamic tests than those in quasi-static tests. The mean crushing force and energy absorption decreased with the crushing velocity and increased with the number of aluminium layers. The impact stroke (when the force starts to drop) decreased with the number of aluminium layers.


Author(s):  
Mengyan Shi ◽  
Jiayao Ma ◽  
Yan Chen ◽  
Zhong You

Thin-walled tubes as energy absorption devices are widely in use for their low cost and high manufacturability. Employing origami technique on a tube enables induction of a predetermined failure mode so as to improve its energy absorption efficiency. Here we study the energy absorption of a hexagonal tubular device named the origami crash box numerically and theoretically. Numerical simulations of the quasi-static axial crushing show that the pattern triggers a diamond-shaped mode, leading to a substantial increase in energy absorption and reduction in initial peak force. The effects of geometric parameters on the performance of the origami crash box are also investigated through a parametric study. Furthermore, a theoretical study on the deformation mode and energy absorption of the origami crash box is carried out, and a good match with numerical results is obtained. The origami crash box shows great promise in the design of energy absorption devices.


Sign in / Sign up

Export Citation Format

Share Document