Effects of olive oil on physical and mechanical properties of ceramic waste-based geopolymer foam

2019 ◽  
Vol 39 (3-4) ◽  
pp. 111-118 ◽  
Author(s):  
Narumon Lertcumfu ◽  
Kannikar Kaewapai ◽  
Pharatree Jaita ◽  
Tawee Tunkasiri ◽  
Somnuk Sirisoonthorn ◽  
...  

The present study concentrated on porous geopolymer composites (between calcined clay and metakaolin) using hydrogen peroxide as a pore generation agent. To reduce as well as recycle the waste from a factory, calcined clay waste was used as starting material. The geopolymer was synthesized via a geopolymerization method by a reaction with an alkaline solution, using the ceramic waste and metakaolin as raw materials. Different amount of olive oil (0–15 wt%) were added to the samples. The olive oil affected the pore formation of the geopolymers. The effects of olive oil, a surfactant, on the properties of the geopolymer composites were investigated. Apparent density and compressive strength of the samples tended to decrease with the additive, while water absorption and total porosity had the opposite effect. However, a variation in the apparent density and water absorption values was observed, due to the formation of closed pores in the samples. The trend of compressive strength value was related with total porosity. A model for pore formation was proposed in this work. The results suggest that this material can be used as a geopolymer foam.

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3363
Author(s):  
Jolanta Latosińska ◽  
Maria Żygadło ◽  
Przemysław Czapik

Wastewater treatment processes produce sewage sludge (SS), which, in line with environmental sustainability principles, can be a valuable source of matter in the production of lightweight expanded clay aggregate (LECA). The literature on the influence of SS content and sintering temperature on the properties of LECA is scarce. This paper aims to statistically evaluate the effects of SS content and sintering temperature on LECA physical properties. Total porosity, pore volume, and apparent density were determined with the use of a density analyzer. A helium pycnometer was utilized to determine the specific density. Closed porosity was calculated. The test results demonstrated a statistically significant influence of the SS content on the specific density and water absorption of LECA. The sintering temperature had a significant effect on the specific density, apparent density, total porosity, closed porosity, total volume of pores, and water absorption. It was proved that a broad range of the SS content is admissible in the raw material mass for the production of LECA.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1816 ◽  
Author(s):  
Marcin Borowicz ◽  
Joanna Paciorek-Sadowska ◽  
Jacek Lubczak ◽  
Bogusław Czupryński

This article raised the issue of studies on the use of new bio-polyol based on white mustard seed oil and 2,2’-thiodiethanol (3-thiapentane-1,5-diol) for the synthesis of rigid polyurethane/polyisocyanurate (RPU/PIR) foams. For this purpose, new formulations of polyurethane materials were prepared. Formulations contained bio-polyol content from 0 to 0.4 chemical equivalents of hydroxyl groups. An industrial flame retardant, tri(2-chloro-1-methylethyl) phosphate (Antiblaze TCMP), was added to half of the formulations. Basic foaming process parameters and functional properties, such as apparent density, compressive strength, brittleness, absorbability and water absorption, aging resistance, thermal conductivity coefficient λ, structure of materials, and flammability were examined. The susceptibility of the foams to biodegradation in soil was also examined. The increase in the bio-polyol content caused a slight increase in processing times. Also, it was noted that the use of bio-polyol had a positive effect on the functional properties of obtained RPU/PIR foams. Foams modified by bio-polyol based on mustard seed oil showed lower apparent density, brittleness, compressive strength, and absorbability and water absorption, as well as thermal conductivity, compared to the reference (unmodified) foams. Furthermore, the obtained materials were more resistant to aging and more susceptible to biodegradation.


2017 ◽  
Vol 79 (7) ◽  
Author(s):  
Noorli Ismail ◽  
Norhafizah Salleh ◽  
Noor Faezah Mohd Yusof ◽  
Zalipah Jamellodin ◽  
Mohd Faizal Mohd Jaafar

This present study investigated the crushed ceramic waste utilisation as sand replacement in solid mortar bricks. The percentage of crushed ceramic waste used were 0% (CW0), 10% (CW10), 20% (CW20) and 30% (CW30) from the total weight of sand. The dimension prescribed of mortar bricks are 215 mm x 102.5 mm x 65 mm as followed accordance to MS 2281:2010 and BS EN 771-1:2011+A1:2015. Four (4) tests were conducted on mortar bricks namely crushing strength, water absorption, compressive strength of masonry units and thermal comfort. The incorporation of ceramic waste in all designated mortar bricks showed the increment of crushing strength between 23% and 46% at 28 days of curing and decrement water absorption between 34% and 44% was recorded corresponding to control mortar bricks. The prism test of masonry units consists of mortar bricks containing ceramic waste indicated the high increment of compressive strength at about 200% as compared to mortar brick without ceramic waste. The thermal comfort test of ceramic mortar bricks were also showed the good insulation with low interior temperature. Therefore, the ceramic waste can be utilised as a material replacement to fine aggregate in mortar brick productions due to significant outcomes performed. 


2020 ◽  
Vol 70 (6) ◽  
pp. 596-602
Author(s):  
P.K. Mehta ◽  
A. Kumaraswamy ◽  
V. K. Saraswat ◽  
Praveen Kumar B.

Utilisation of propellant waste in fabrication of bricks is not only used as efficient waste disposal method but also to get better functional properties. In the present study, high energy propellant (HEP) waste additive mixed with soil and fly ash in different proportions during manufacturing of bricks has been investigated experimentally. X-ray diffraction (XRD) studies were carried out to confirm the brick formation and the effect of HEP waste. Ceramic bricks were fabricated with HEP waste additive in proper proportions i.e. 0.5 wt %, 1.0 wt %, 1.5 wt %, 2.0 wt %, 2.5 wt %, 3 wt %, 3.5 wt %, and 4 wt % and then evaluated for water absorption capability and compressive strength. Compressive strength of 6.7 N/mm2, and Water absorption of 22 % have been observed from modified fired bricks impregnated with HEM waste additive. Scanning electron microscopy (SEM) studies were carried out to analyze the effect of HEP waste additive on pore formation and distribution in the bricks. Further, the heat resulting from decomposition of propellants can cause a decrease in the energy required of baking process. The process of manufacturing of bricks with HEP waste additive is first of its kind till date.


2007 ◽  
Vol 336-338 ◽  
pp. 2062-2064
Author(s):  
Xiu Ling Tang ◽  
Min Fang Han ◽  
Qi Wang

The main chemistry ingredients of the shale in Baoding, China, are SiO2 and Al2O3, and the mineral components are quartz, feldspar and mica. The shale was sintered to produce pottery at 1000 ~ 1300°C and its deposit density and expansion ratio were measured. The compressive strength, apparent density, water absorption, etc, of some sintered samples with expansion ratio more than 1.5 were measured according to GB/T17431.2-1998. When sintered at 1150°C for 15 min, the expansion ratio of the shale is 1.96. When sintered at 1200°C for 10 min, the expansion ratio is 2.00. The performances of the prepared pottery accord with GB/T17431.2-1998: the compressive strength is 3.8MPa with the expansion ratio 1.96, the compressive strength is 4.2MPa with the expansion ratio 2.00. The water absorption is 4.9~5.8%, according with GB/T17431.2-1998.


2017 ◽  
Vol 751 ◽  
pp. 521-526 ◽  
Author(s):  
Jiraphorn Mahawan ◽  
Somchai Maneewan ◽  
Tanapon Patanin ◽  
Atthakorn Thongtha

This research concentrates to the effect of changing sand proportion on the physical, mechanical and thermal properties of building wall materials (Cellular lightweight concrete). The density, water absorption and compressive strength of the 7.0 cm x 7.0 cm x 7.0 cm concrete sample were studied. It was found that there are an increase of density and a reduction of water absorption with an increase of sand content. The higher compressive strength can be confirmed by higher density and lower water absorption. The physical and mechanical properties of lightweight concrete conditions conformed to the Thai Industrial Standard 2601-2013. The phases of CaCO3 and calcium silicate hydrate (C-S-H) in the material indicate an important factor in thermal insulating performance.


Cerâmica ◽  
2019 ◽  
Vol 65 (373) ◽  
pp. 153-161 ◽  
Author(s):  
H. M. Khater

Abstract Production of lightweight building materials attract the attention of the scientists worldwide with the need for reducing the structure deadweight, provide better thermal insulation for buildings, and cost less to transport. The current work focused on the production of lightweight geopolymer composites by the incorporation of aluminum powder and aluminum slag in various ratios for water-cooled slag/kaolinite sand composite; the activators used were 6% of equal ratio from sodium hydroxide and sodium silicate. The properties of the produced lightweight geopolymer composites were studied by measurement of compressive strength, bulk density, water absorption, FTIR, XRD and SEM imaging. Results showed the enhancement for both physicomechanical and microstructural characteristics with using aluminum powder and aluminum slag forming lightweight composites with densities below 2.15 g/cm3 depending on the studied mix composition.


2010 ◽  
Vol 2 (6) ◽  
pp. 50-55
Author(s):  
Marija Vaičienė ◽  
Jurgita Malaiškienė

Binder material is the most expensive raw component of concrete; thus, scientists are looking for cheaper substitute materials. This paper shows that when manufacturing, a part of the binder material of expanded-clay lightweight concrete can be replaced with active filler. The conducted studies show that technogenic – catalyst waste could act as similar filler. The study also includes the dependence of the physical and mechanical properties of expanded-clay lightweight concrete on the concrete mixture and the chemical composition of the samples obtained. Different formation and composition mixtures of expanded-clay lightweight concrete were chosen to determine the properties of physical-mechanical properties such as density, water absorption and compressive strength.


Author(s):  
Vu-An Tran

This research investigates the physical and mechanical properties of mortar incorporating fly ash (FA), which is by-product of Duyen Hai thermal power plant. Six mixtures of mortar are produced with FA at level of 0%, 10%, 20%, 30%, 40%, and 50% (by volume) as cement replacement and at water-to-binder (W/B) of 0.5. The flow, density, compressive strength, flexural strength, and water absorption tests are made under relevant standard in this study. The results have shown that the higher FA content increases the flow of mortar but significantly decreases the density of mixtures. The water absorption and setting time increases as the samples incorporating FA. Compressive strength of specimen with 10% FA is approximately equal to control specimen at the 91-day age. The flexural strength of specimen ranges from 7.97 MPa to 8.94 MPa at the 91-day age with the best result for samples containing 10% and 20% FA.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Ji-jing Wang ◽  
Zhen-ning Shi ◽  
Ling Zeng ◽  
Shuang-xing Qi

In order to analyze the influence of different nanoadditives on the physical and mechanical properties of similar silty mudstone materials, nano-TiO2 (NTi), nano Al2O3 (NAl), and nanobentonite (NBe) were added to improve the physical and mechanical properties of silty mudstone similar materials. The physical and mechanical parameters are more in line with silty rock. Finally, nanometer additives suitable for silty mudstone similar materials are determined by conducting density test, natural water absorption test, uniaxial compression test, splitting test, softening coefficient test, expansibility test, and microscopic test. The effects of adding NTi, NAl, and NBe on improving the physical and mechanical properties of silty mudstone similar materials were studied to analyze the influence law of different NTi, NAl, and NBe contents on similar material density, natural water absorption, uniaxial compressive strength, tensile strength, softening coefficient, expansion rate, and other physical and mechanical parameters. The microscopic morphology of similar materials was analyzed by scanning electron microscopy and the mechanism of influence of nanoadditives on the microscopic structure of samples was revealed. The results are as follows. (1) The density of similar materials of silty mudstone increases with the increase of the content of nanoadditive. The natural water absorption rate decreased first and then increased with the increase of the content of nanometer additives, while the softening coefficient decreased with the increase of the content of nanometer additives. The uniaxial compressive strength and tensile strength increased first and then decreased with the increase of the content of nanometer additives. This is due to the incorporation of the nanoadditive amount effective to promote the hydration reaction of gypsum and accelerate the production of cement, while a similar material may be filled in the pores, reducing the internal defects, a similar material to make denser; when excessive dosage, nanoadditives agglomeration occurs, resulting in deterioration of the effect, but will reduce the mechanical properties of similar materials. (2) When the content of NBe is 6%, the physical and mechanical parameters of similar materials can reach or be closer to the silty raw rock except uniaxial compressive strength. The failure mode of the uniaxial compression specimen is also the same as that of the original rock, which can be used as the best choice. The research results laid the foundation for further analysis of NBe application in similar materials.


Sign in / Sign up

Export Citation Format

Share Document