Preparation of Pottery from Shale

2007 ◽  
Vol 336-338 ◽  
pp. 2062-2064
Author(s):  
Xiu Ling Tang ◽  
Min Fang Han ◽  
Qi Wang

The main chemistry ingredients of the shale in Baoding, China, are SiO2 and Al2O3, and the mineral components are quartz, feldspar and mica. The shale was sintered to produce pottery at 1000 ~ 1300°C and its deposit density and expansion ratio were measured. The compressive strength, apparent density, water absorption, etc, of some sintered samples with expansion ratio more than 1.5 were measured according to GB/T17431.2-1998. When sintered at 1150°C for 15 min, the expansion ratio of the shale is 1.96. When sintered at 1200°C for 10 min, the expansion ratio is 2.00. The performances of the prepared pottery accord with GB/T17431.2-1998: the compressive strength is 3.8MPa with the expansion ratio 1.96, the compressive strength is 4.2MPa with the expansion ratio 2.00. The water absorption is 4.9~5.8%, according with GB/T17431.2-1998.

Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1816 ◽  
Author(s):  
Marcin Borowicz ◽  
Joanna Paciorek-Sadowska ◽  
Jacek Lubczak ◽  
Bogusław Czupryński

This article raised the issue of studies on the use of new bio-polyol based on white mustard seed oil and 2,2’-thiodiethanol (3-thiapentane-1,5-diol) for the synthesis of rigid polyurethane/polyisocyanurate (RPU/PIR) foams. For this purpose, new formulations of polyurethane materials were prepared. Formulations contained bio-polyol content from 0 to 0.4 chemical equivalents of hydroxyl groups. An industrial flame retardant, tri(2-chloro-1-methylethyl) phosphate (Antiblaze TCMP), was added to half of the formulations. Basic foaming process parameters and functional properties, such as apparent density, compressive strength, brittleness, absorbability and water absorption, aging resistance, thermal conductivity coefficient λ, structure of materials, and flammability were examined. The susceptibility of the foams to biodegradation in soil was also examined. The increase in the bio-polyol content caused a slight increase in processing times. Also, it was noted that the use of bio-polyol had a positive effect on the functional properties of obtained RPU/PIR foams. Foams modified by bio-polyol based on mustard seed oil showed lower apparent density, brittleness, compressive strength, and absorbability and water absorption, as well as thermal conductivity, compared to the reference (unmodified) foams. Furthermore, the obtained materials were more resistant to aging and more susceptible to biodegradation.


2015 ◽  
Vol 777 ◽  
pp. 224-228 ◽  
Author(s):  
Xiang Liu ◽  
Yuan Jun Li

The main chemical composition of waste brick is silicon dioxide,by means of chemical can stimulate its activity.In this experiment, gypsum, lime sodium hydroxide as activators,through the testing and research about the properties of compressive strength, dry density, water absorption of brick powder foam concrete,analyse the influence of three activators on the properties of foam concrete.The test results show that the:Mixing about 25% lime can guarantee the dry apparent density on the basis of compressive strength increases;Mixing 20% gypsum can make the strength and dry apparent density relatively stable;The incorporation of NaOH make the foam concrete appear quick setting,so it should not be used alone as activator.


2019 ◽  
Vol 39 (3-4) ◽  
pp. 111-118 ◽  
Author(s):  
Narumon Lertcumfu ◽  
Kannikar Kaewapai ◽  
Pharatree Jaita ◽  
Tawee Tunkasiri ◽  
Somnuk Sirisoonthorn ◽  
...  

The present study concentrated on porous geopolymer composites (between calcined clay and metakaolin) using hydrogen peroxide as a pore generation agent. To reduce as well as recycle the waste from a factory, calcined clay waste was used as starting material. The geopolymer was synthesized via a geopolymerization method by a reaction with an alkaline solution, using the ceramic waste and metakaolin as raw materials. Different amount of olive oil (0–15 wt%) were added to the samples. The olive oil affected the pore formation of the geopolymers. The effects of olive oil, a surfactant, on the properties of the geopolymer composites were investigated. Apparent density and compressive strength of the samples tended to decrease with the additive, while water absorption and total porosity had the opposite effect. However, a variation in the apparent density and water absorption values was observed, due to the formation of closed pores in the samples. The trend of compressive strength value was related with total porosity. A model for pore formation was proposed in this work. The results suggest that this material can be used as a geopolymer foam.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1431 ◽  
Author(s):  
Joanna Paciorek-Sadowska ◽  
Marcin Borowicz ◽  
Marek Isbrandt ◽  
Bogusław Czupryński ◽  
Łukasz Apiecionek

This article presents the results of research on obtaining new polyurethane materials modified by a by-product from vegetable oils industry—rapeseed cake. The chemical composition of rapeseed cake was examined. Rigid polyurethane-polyisocyanurate (RPU/PIR) foams containing a milled rapeseed cake in their composition were obtained as part of the conducted research. Biofiller was added in amount of 30 wt.% up to 60 wt.%. Effects of rapeseed cake on the foaming process, cell structure and selected properties of foams, such as apparent density, compressive strength, brittleness, flammability, absorbability, water absorption, thermal resistance and thermal conductivity are described. The foaming process of RPU/PIR foams modified by rapeseed cake was characterized by a lower reactivity, lower foaming temperature and decrease in dielectric polarization. This resulted in a slowed formation of the polyurethane matrix. Apparent density of RPU/PIR foams with biofiller was higher than in unmodified foam. Addition of rapeseed cake did not have a significant influence on the thermal conductivity of obtained materials. However, we observed a tendency for opening the cells of modified foams and obtaining a smaller cross-sectional area of cells. This led to an increase of absorbability and water absorption of obtained materials. However, an advantageous effect of using rapeseed cake in polyurethane formulations was noted. Modified RPU/PIR foams had higher compressive strength, lower brittleness and lower flammability than reference foam.


2021 ◽  
pp. 026248932110171
Author(s):  
Chunhui Li ◽  
Haihong Ma ◽  
Congqiang Song ◽  
Zhengfa Zhou ◽  
Weibing Xu ◽  
...  

Melamine-formaldehyde (MF)rigid foams with high closed cell content were prepared via oven heating process, using MF prepolymer prepared from melamine and paraformaldehyde as a matrix, cyclohexane as the foaming agent, dimethyl silicon oil as the foam stabilizers, hydrochloric acid as the catalyst. The effect of MF prepolymer viscosity, foaming temperature, amount of catalyst on morphology, closed cell content, apparent density, water absorption and compressive strength of MF rigid foams were systematically studied. The optimized foaming conditions are as follows: the viscosity of MF prepolymer ranges from 35 Pa·s to 45 Pa·s, the foaming temperature is 125°C and the content of the catalyst is 0.65 wt%. The as-prepared MF foams showed the best comprehensive performance with closed cell content of 83.5%, apparent density of 62 kg·m−3, water absorption of 12.0%, compressive strength of 292kPa, thermal conductivity of 0.033 W m−1 K−1 and limiting oxygen index (LOI) of 36%. Compared to conventional organic foams, MF rigid foams possess low water absorption, excellent thermal insulation and flame retardancy due to high closed cell content, and can be expected to be used as thermal insulation material for building exterior walls.


Cerâmica ◽  
2018 ◽  
Vol 64 (372) ◽  
pp. 589-597 ◽  
Author(s):  
G. Djafri ◽  
N. Chelouah

Abstract The main aim of this study was to evaluate the effect of diameter of ground date pits (GDP) on the technological properties of a clay brick. For this purpose, increasing amounts of GDP (0, 5, 10, 15 and 20 wt%) with different diameters were mixed with a clay to produce clay bricks by pressing, drying and then firing at 900 °C. The GDP diameter and content changed the water requirement for plasticity. The shrinkage, water absorption and apparent porosity of fired clay brick increased with the content and diameter of GDP. The compressive strength, apparent density and thermal conductivity of the samples decreased with the increase in diameter and content of GDP. With the help of SEM micrographs, it was observed that the combustion of added GDP in the mixture led to a reduction in the diameter of pores formed in the fired clay brick samples.


2012 ◽  
Vol 581-582 ◽  
pp. 620-626
Author(s):  
Guang Sheng Zeng ◽  
Rui Zhen Lin ◽  
Liang Jie Zheng ◽  
Gong Meng ◽  
Lei Chen

The foamed composites could be completely biodegradable which was mainly prepared by corn starch and PVA as matrixes, reinforced by bamboo fiber, separately foamed by water, NH4HCO3 and AC/ZnO, plasticized by the mixed plasticizer of glycerol/urea and other adjuvants using extrusion foaming method. They were respectively called as WPS, NPS, APS. Then, the foamed composites’ apparent density, expansion ratio, water absorbtion, rebound rate, thermostability and cell morphology were discussed and compared with. The results showed that the apparent density decreased with increasing foamer content, then increasing; The apparent density of WPS、NPS and APS was respectively 0.24 g.cm-3, 0.27 g.cm-3, 0.15 g.cm-3; The expansion ratio increased with increasing foamer content, then decreasing; The expansion ratio of WPS, NPS and APS was respectively 63.8%、69.3%、75.4%; The water absorption increased with increasing foamer content, then decreasing; The water absorption of WPS, NPS and APS was respectively 71.3%, 64.4%, 73.4%; The rebound rate increased with increasing foamer content, then decreasing; The reboundrate of WPS, NPS and APS was respectively 54.3%, 46.8%, 58.3%; The thermostability of NPS was the best, and APS was the second, and WPS was the third. The number of cells was firstly increased with increasing foamer content, then decreasing and the side of cells became smaller with increasing content of foamer, then becoming larger.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3363
Author(s):  
Jolanta Latosińska ◽  
Maria Żygadło ◽  
Przemysław Czapik

Wastewater treatment processes produce sewage sludge (SS), which, in line with environmental sustainability principles, can be a valuable source of matter in the production of lightweight expanded clay aggregate (LECA). The literature on the influence of SS content and sintering temperature on the properties of LECA is scarce. This paper aims to statistically evaluate the effects of SS content and sintering temperature on LECA physical properties. Total porosity, pore volume, and apparent density were determined with the use of a density analyzer. A helium pycnometer was utilized to determine the specific density. Closed porosity was calculated. The test results demonstrated a statistically significant influence of the SS content on the specific density and water absorption of LECA. The sintering temperature had a significant effect on the specific density, apparent density, total porosity, closed porosity, total volume of pores, and water absorption. It was proved that a broad range of the SS content is admissible in the raw material mass for the production of LECA.


2021 ◽  
Vol 11 (8) ◽  
pp. 3540
Author(s):  
Numfor Linda Bih ◽  
Assia Aboubakar Mahamat ◽  
Jechonias Bidossèssi Hounkpè ◽  
Peter Azikiwe Onwualu ◽  
Emmanuel E. Boakye

The quantity of polymer waste in our communities is increasing significantly. It is therefore necessary to consider reuse or recycling waste to avoid an increase in the risk to public health. This project is aimed at using pulverized low-density polyethylene (LDPE) waste as a source to reinforce and improve compressive strength, and to reduce the water absorption of geopolymer ceramics (GC). Clay:LDPE composition consisting of 5%, 10%, and 15% LDPE was geopolymerized with an NaOH/Na2SiO3 solution and cured at 30 °C and 50 °C. Characterization of the geopolymer samples was carried out using XRF and XRD. The microstructure was analyzed by SEM and chemical bonding by FTIR. The SEM micrographs showed LDPE particle pull-out on the geopolymer ceramics’ fracture surface. The result showed that the compressive strength increases with the addition of pulverized polymer waste compared to the controlled without LDPE addition. Water absorption decreased with an increase in LDPE addition in the geopolymer ceramics composite.


Sign in / Sign up

Export Citation Format

Share Document