Synthesis, characterization, and antimicrobial properties of novel dual drug loaded electrospun mat for wound dressing applications

2021 ◽  
Vol 36 (5) ◽  
pp. 431-443
Author(s):  
Swetha Andra ◽  
Satheesh kumar Balu ◽  
Rajalakshmi Ramamoorthy ◽  
Murugesan Muthalagu ◽  
Devisri Sampath ◽  
...  

Wound healing properties of some herbs have been known for decades. Recently, electrospun mats have been used as a wound dressing material due to the high surface area of fiber and ease of incorporation of drug into the fiber matrix. In this aspect, the incorporation of herbal extracts in electrospun matrix could provide synergistic effect for wound healing. In the present work, extracts from Cissus quadrangularis (CQ) and Galinsoga parviflora Cav (GP) were loaded into the PVA solution in different proportions. These solutions were used to produce nanofibrous mat in electrospinning and the characteristics of the mat were analyzed. The morphology of the fiber was analyzed using scanning electron microscope (SEM), the presence of functional groups was identified using Fourier transform infrared spectroscopy (FTIR). The result of drug release shows that the GP extract loaded PVA nanofibrous mat has sustained drug release of 28% after 8 h of incubation compared to CQ loaded PVA nanofibrous mat. This trend follows as the concentration of GP increases in the mixture. The antimicrobial efficiency of the prepared mat was evaluated against both Gram-negative bacteria E. coli and Gram-positive bacteria S. aureus. The prepared nanofibrous mat has shown excellent antibacterial activity, cell viability, hemocompatibility, and sufficient tensile properties which indicates that it could be a promising biomaterial for wound dressing application.

2012 ◽  
Vol 47 (6) ◽  
pp. 1379-1384 ◽  
Author(s):  
Padmaja Parameswaran Nampi ◽  
Vinitha Sudha Mohan ◽  
Anil Kumar Sinha ◽  
Harikrishna Varma

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4087
Author(s):  
Marta Szekalska ◽  
Aleksandra Citkowska ◽  
Magdalena Wróblewska ◽  
Katarzyna Winnicka

Fungal infections and invasive mycoses, despite the continuous medicine progress, are an important globally therapeutic problem. Multicompartment dosage formulations (e.g., microparticles) ensure a short drug diffusion way and high surface area of drug release, which as a consequence can provide improvement of therapeutic efficiency compared to the traditional drug dosage forms. As fucoidan is promising component with wide biological activity per se, the aim of this study was to prepare fucospheres (fucoidan microparticles) and fucoidan/gelatin microparticles with posaconazole using the one-step spray-drying technique. Pharmaceutical properties of designed fucospheres and the impact of the gelatin addition on their characteristics were evaluated. An important stage of this research was in vitro evaluation of antifungal activity of developed microparticles using different Candida species. It was observed that gelatin presence in microparticles significantly improved swelling capacity and mucoadhesiveness, and provided a sustained POS release. Furthermore, it was shown that gelatin addition enhanced antifungal activity of microparticles against tested Candida spp. strains. Microparticles formulation GF6, prepared by the spray drying of 20% fucoidan, 5% gelatin and 10% Posaconazole, were characterized by optimal mucoadhesive properties, high drug loading and the most sustained drug release (after 8 h 65.34 ± 4.10% and 33.81 ± 5.58% of posaconazole was dissolved in simulated vaginal fluid pH 4.2 or 0.1 M HCl pH 1.2, respectively).


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 92
Author(s):  
Kaja Kupnik ◽  
Mateja Primožič ◽  
Željko Knez ◽  
Maja Leitgeb

Nowadays, there are many commercial products from natural resources on the market, but they still have many additives to increase their biological activities. On the other hand, there is particular interest in natural sources that would have antimicrobial properties themselves and would inhibit the growth and the reproduction of opportunistic microorganisms. Therefore, a comparative antimicrobial study of natural samples of aloe and its commercial products was performed. Qualitative and quantitative determination of antimicrobial efficiency of Aloe arborescens and Aloe barbadensis and its commercial products on fungi, Gram-negative, and Gram-positive bacteria was performed. Samples exhibited antimicrobial activity and slowed down the growth of all tested microorganisms. Research has shown that natural juices and gels of A. arborescens and A. barbadensis are at higher added concentrations comparable to commercial aloe products, especially against microbial cultures of Bacillus cereus, Candida albicans, and Pseudomonas aeruginosa, whose growths were completely inhibited at a microbial concentration of 600 μg/mL. Of particular importance are the findings of the good antimicrobial efficacy of fresh juice and gel of A. arborescens on tested microorganisms, which is less known and less researched. These results show great potential of A. arborescens for further use in medicine, cosmetics, food, and pharmaceutical industries.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Lin Jin ◽  
Xiaoqing Guo ◽  
Di Gao ◽  
Cui Wu ◽  
Bin Hu ◽  
...  

AbstractEffectively achieving wound healing is a great challenge. Herein, we facilely prepared temperature-responsive MXene nanobelt fibers (T-RMFs) carrying vitamin E with a controllable release ability for wound healing. These T-RMFs were composed of MXene nanosheets spread along polyacrylonitrile and polyvinylpyrrolidone composite nanobelts together with a thermosensitive PAAV- coating layer. The high mass loading and high surface area of the MXene nanosheets endow the T-RMFs with excellent photothermal properties. The temperature could be easily controlled by near-infrared (NIR) irradiation exposure, and then the thermoresponsive polymeric coating layer relaxed the interface to dissolve vitamin E and promote vitamin E release. The T-RMFs demonstrated excellent biocompatibility and wound-healing functions in cellular and animal tests. The facile method, high mass loading, high surface area, excellent wound-healing functions, interesting nanosheet/nanobelt structure, mass production potential, and NIR responsive properties of these T-RMFs indicate the great potential of our nanobelts for wound healing, tissue engineering, and much broader application areas. This facile nanosheet/nanobelt preparation strategy paves a new way for nanomaterial fabrication and applications.


2019 ◽  
Vol 14 ◽  
pp. 155892501882490 ◽  
Author(s):  
Fatma Yalcinkaya

The importance of the nanofiber webs increases rapidly due to their highly porous structure, narrow pore size, and distribution; specific surface area and compatibility with inorganics. Electrospinning has been introduced as one of the most efficient technique for the fabrication of polymeric nanofibers due to its ability to fabricate nanostructures with unique properties such as a high surface area and porosity. The process and the operating parameters affect the nanofiber fabrication and the application of nanofibers in various fields, such as sensors, tissue engineering, wound dressing, protective clothes, filtration, desalination, and distillation. In this review, a comprehensive study is presented on the parameters of electrospinning system including applications. More emphasis is given to the application of nanofibers in membrane distillation (MD). The research developments and the current situation of the nanofiber webs in MD are also discussed.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1612
Author(s):  
Ilker S. Bayer

Polymer nanofibers have exceptionally high surface area. This is advantageous compared to bulk polymeric structures, as nanofibrils increase the area over which materials can be transported into and out of a system, via diffusion and active transport. On the other hand, since hydrogels possess a degree of flexibility very similar to natural tissue, due to their significant water content, hydrogels made from natural or biodegradable macromolecular systems can even be injectable into the human body. Due to unique interactions with water, hydrogel transport properties can be easily modified and tailored. As a result, combining nanofibers with hydrogels would truly advance biomedical applications of hydrogels, particularly in the area of sustained drug delivery. In fact, certain nanofiber networks can be transformed into hydrogels directly without the need for a hydrogel enclosure. This review discusses recent advances in the fabrication and application of biomedical nanofiber hydrogels with a strong emphasis on drug release. Most of the drug release studies and recent advances have so far focused on self-gelling nanofiber systems made from peptides or other natural proteins loaded with cancer drugs. Secondly, polysaccharide nanofiber hydrogels are being investigated, and thirdly, electrospun biodegradable polymer networks embedded in polysaccharide-based hydrogels are becoming increasingly popular. This review shows that a major outcome from these works is that nanofiber hydrogels can maintain drug release rates exceeding a few days, even extending into months, which is an extremely difficult task to achieve without the nanofiber texture. This review also demonstrates that some publications still lack careful rheological studies on nanofiber hydrogels; however, rheological properties of hydrogels can influence cell function, mechano-transduction, and cellular interactions such as growth, migration, adhesion, proliferation, differentiation, and morphology. Nanofiber hydrogel rheology becomes even more critical for 3D or 4D printable systems that should maintain sustained drug delivery rates.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Yangyang Liu ◽  
Shurui Song ◽  
Shuangyong Liu ◽  
Xiaoyan Zhu ◽  
Peige Wang

Traditional dressings used for wound repair, such as gauze, have shortcomings; for example, they cannot provide a suitable microenvironment for wound recovery. Therefore, it is necessary to find a better dressing to overcome shortcomings. Hydrogel provides a suitable wet environment, has good biocompatibility, and has a strong swelling rate to absorb exudate. Nanomaterial in hydrogels has been used to improve their performance and overcome the shortcomings of current hydrogel dressings. Hydrogel dressing can also be loaded with nanodrug particles to exert a better therapeutic effect than conventional drugs and to make the dressing more practical. This article reviews the application of nanotechnology in hydrogels related to wound healing and discusses the application prospects of nanohydrogels. After searching for hydrogel articles related to wound healing, we found that nanomaterial can not only enhance the mechanical strength, antibacterial properties, and adhesion of hydrogels but also achieve sustained drug release. From the perspective of clinical application, these characteristics are significant for wound healing. The combination of nanomaterial and hydrogel is an ideal dressing with broad application prospects for wound healing in the future.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Woan Sean Tan ◽  
Palanisamy Arulselvan ◽  
Shiow-Fern Ng ◽  
Che Norma Mat Taib ◽  
Murni Nazira Sarian ◽  
...  

Chronic wounds represent serious globally health care and economic issues especially for patients with hyperglycemic condition. Wound dressings have a predominant function in wound treatment; however, the dressings for the long-lasting and non-healing wounds are still a significant challenge in the wound care management market. Astonishingly, advanced wound dressing which is embedded with a synthetic drug compound in a natural polymer compound that acts as drug release carrier has brought about promising treatment effect toward injured wound. In the current study, results have shown that Vicenin-2 (VCN-2) compound in low concentration significantly enhanced cell proliferation and migration of HDF. It also regulated the production of pro-inflammatory cytokines such as IL-6, IL-1β, and TNF-α from HDF in wound repair. Treatment of VCN-2 also has facilitated the expression of TGF-1β and VEGF wound healing maker in a dose-dependent manner. A hydrocolloid film based on sodium alginate (SA) incorporated with VCN-2 synthetic compound which targets to promote wound healing particularly in diabetic condition was successfully developed and optimized for its physico-chemical properties. It was discovered that all the fabricated film formulations prepared were smooth, translucent, and good with flexibility. The thickness and weight of the formulations were also found to be uniform. The hydrophilic polymer comprised of VCN-2 were shown to possess desirable wound dressing properties and superior mechanical characteristics. The drug release profiles have revealed hydrocolloid film, which is able to control and sustain the VCN-2 released to wound area. In short, hydrocolloid films consisting of VCN-2 formulations are suitably used as a potential wound dressing to promote restoration of wound injury.


Sign in / Sign up

Export Citation Format

Share Document