Improving thermal conductivity of polybutylene terephthalate composites with hybrid synthetic graphite and carbon fiber

2021 ◽  
pp. 089270572110184
Author(s):  
Zafer Yenier ◽  
Sibel Aker ◽  
Yoldas Seki ◽  
Lutfiye Altay ◽  
Ozgur Bigun ◽  
...  

Polybutylene terephthalate (PBT) is a semi-crystalline engineering thermoplastic polyester. PBT offers rapid molding cycles, high heat resistant, crystallinity, fatigue resistance, strength and rigidity, excellent electrical properties, creep resistance, reproducible mold shrinkage and chemical resistance. In this study, PBT was loaded with synthetic graphite and carbon fiber at different weight fractions (10–40 wt.%). PBT-based composites were fabricated by the melt mixing process by using a co-rotating twin screw extruder then thermal, mechanical and morphological properties of filled PBT composites was investigated. Weight fraction of carbon fiber (up to 30 wt.%) increases the tensile strength and flexural strength of PBT, but synthetic graphite loading decreases the tensile strength and flexural strength of PBT. The highest in-plane and through-plane thermal conductivity values were obtained as 9.24 for 40 wt.% synthetic graphite filled composite and 3.41 W/mK for 40 wt.% carbon fiber reinforced composite, respectively. Carbon fiber was found to be more effective in increasing the through-plane thermal conductivities than synthetic graphite.

2014 ◽  
Vol 1025-1026 ◽  
pp. 215-220 ◽  
Author(s):  
Sasirada Weerasunthorn ◽  
Pranut Potiyaraj

Fumed silica particles (SiO2) were directly added into poly (butylene succinate) (PBS) by melt mixing process. The effects of amount of fumed silica particles on mechanical properties of PBS/fumed silica composites, those are tensile strength, tensile modulus, impact strength as well as flexural strength, were investigated. It was found that the mechanical properties decreased with increasing fumed silica loading (0-3 wt%). In order to increase polymer-filler interaction, fumed silica was treated with 3-glycidyloxypropyl trimethoxysilane (GPMS), and its structure was analyzed by FT-IR spectrophotometry. The PBS/modified was found to possess better tensile strength, tensile modulus, impact strength and flexural strength that those of PBS/fumed silica composites.


1989 ◽  
Vol 4 (6) ◽  
pp. 1339-1346 ◽  
Author(s):  
C. T. Ho ◽  
D. D. L. Chung

Unidirectional and continuous carbon fiber tin-matrix composites were used for the packaging of the high-temperature superconductor YBa2Cu3O7–δ by diffusion bonding at 170 °C and 500 psi. Tin served as the adhesive and to increase the ductility, the normal-state electrical conductivity, and the thermal conductivity. Carbon fibers served to increase the strength and the modulus, both in tension along the fiber direction and in compression perpendicular to the fiber layers, though they decreased the strength in compression along the fiber direction. Carbon fibers also served to increase the thermal conductivity and the thermal fatigue resistance. At 24 vol. % fibers, the tensile strength was approximately equal to the compressive strength perpendicular to the fiber layers. With further increase of the fiber content, the tensile strength exceeded the compressive strength perpendicular to the fiber layers, reaching 134 MPa at 31 vol. % fibers. For fiber contents less than 30 vol. %, the compressive ductility perpendicular to the fiber layers exceeded that of the plain superconductor. At 30 vol. % fibers, the tensile modulus reached 15 GPa at room temperature and 27 GPa at 77 K. The tensile load was essentially sustained by the carbon fibers and the superconducting behavior was maintained after tension almost to the point of tensile fracture. Neither Tc nor Jc was affected by the composite processing.


2018 ◽  
Vol 162 ◽  
pp. 02024
Author(s):  
Waleed Abbas ◽  
Wasan Khalil ◽  
Ibtesam Nasser

Due to the rapid depletion of natural resources, the use of waste materials and by-products from different industries of building construction has been gaining increased attention. Geopolymer concrete based on Pozzolana is a new material that does not need the presence of Portland cement as a binder. The main focus of this research is to produce lightweight geopolymer concrete (LWGPC) using artificial coarse lightweight aggregate which produced from locally available bentonite clays. In this investigation, the binder is low calcium fly ash (FA) and the alkali activator is sodium hydroxide and sodium silicate in different molarities. The experimental tests including workability, fresh density, also, the compressive strength, splitting tensile strength, flexural strength, water absorption and ultrasonic pulse velocity at the age of 7, 28 and 56 days were studied. The oven dry density and thermal conductivity at 28 days age are investigated. The results show that it is possible to produce high strength lightweight geopolymer concrete successfully used as insulated structural lightweight concrete. The 28-day compressive strength, tensile strength, flexural strength, dry density, and thermal conductivity of the produced LWGPC are 35.8 MPa, 2.6MPa, 5.5 MPa, 1835kg/m3, and 0.9567 W/ (m. K), respectively.


2010 ◽  
Vol 93-94 ◽  
pp. 169-172
Author(s):  
N. Wiriyanukul ◽  
S. Wacharawichanant

This work studies the effect of PE-g-MA compatibilizer on mechanical thermal and morphological properties of high density polyethylene (HDPE)/titanium dioxide (TiO2) nanocomposites. The HDPE/TiO2 nanocomposites with and without PE-g-MA compatibilizer were prepared by melt mixing technique in a twin screw extruder. The results found that Young's Modulus of HDPE/TiO2 nanocomposites increased with increasing TiO2 contents. The addition of PE-g-MA compatibilizer had no significant effect on the tensile strength and stress at break of HDPE/TiO2 nanocomposites. The decomposition temperatures of HDPE/TiO2 nanocomposites before and after adding PE-g-MA compatibilizer increased with increasing TiO2 contents. The dispersion of TiO2 nanoparticles in HDPE matrix was observed by scanning electron microscope (SEM). The dispersion of nanoparticles in HDPE matrix with PE-g-MA compatibilizer was relatively good, only a few aggregates exited.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Md. Mamunur Rashid ◽  
Sabrin A. Samad ◽  
M. A. Gafur ◽  
Md. Rakibul Qadir ◽  
A. M. Sarwaruddin Chowdhury

This research studied the physicomechanical as well as morphological properties of alkali treated (NaOH and KMnO4) and untreated banana bark fiber (BBF) reinforced polypropylene composites. A detailed structural and morphological characterization was performed using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and mechanical properties testing (tensile strength, flexural strength, and microhardness). Chemical treatments improved the hydrophobic property of the fiber and it is found to be better for KMnO4treatment. Composites with 0, 5, 10, and 15 wt.% loadings were then compared for water uptake studies and revealed that KMnO4treated fiber composites absorb less water compared to others. KMnO4treatment with 15% fiber loading improved the tensile strength, flexural strength, and microhardness of the composites compared to raw and NaOH treated fiber loadings. TGA analysis also shows onset temperature at 400~500°C that is associated with the decomposition of the banana fibers constituents including lignin, cellulose, and hemicelluloses which suggests better thermomechanical stability. All of the values suggest that 15% KMnO4treated banana bark fiber (BBF)/PP composites were found to be better than those of the raw and NaOH treated ones.


Author(s):  
Emel Kuram

In this study, the ageing behaviour of glass-fibre-reinforced poly(oxymethylene) composite at different conditions was investigated. The ageing was performed in various controlled environments, namely in air at room temperature, in water at room temperature and in an oven at the temperature of 100 ℃. Tensile and flexural tests were conducted to determine the mechanical properties, melt flow index was measured to determine the rheological property and scanning electron microscopy was used to observe the morphological property of unaged and aged poly(oxymethylene) samples. A reduction in both tensile and flexural strength was observed with all ageing environment. The worst strength retention was obtained with water ageing. Water absorbed by glass-fibre-reinforced poly(oxymethylene) composite had a detrimental influence on the tensile and flexural strength. Tensile strength was affected by the ageing environments. The decrease in the tensile strength of air and thermally aged poly(oxymethylene) was slower than that of water aged poly(oxymethylene), and the tensile strength of aged samples decreased as the ageing time increased. The combined actions of heat, air and water (thermal + water + air ageing) did not further degrade glass-fibre-reinforced poly(oxymethylene) compared to only water ageing at the room temperature. All tensile stress–strain and flexural load–deflection curves showed the similar tendency and did not change with ageing environments and time. All aged samples showed higher melt flow index values than that of unaged sample and the changes in melt flow index could be an indicator of degradation.


2016 ◽  
Vol 30 (3) ◽  
pp. 341-357 ◽  
Author(s):  
Qin Tian ◽  
Shuhao Qin ◽  
Fuzhong Wu ◽  
Huixin Jin ◽  
Ming Yang ◽  
...  

Polypropylene (PP)/ethylene acrylic acid (EAA)/maleic anhybride-grafted PP (PP- g-MA)/organoclay nanocomposites were prepared using the melt mixing technique, and PP- g-MA and EAA were employed as the compatibilizers. The sodium montmorillonite (MMT) were pretreated with high-speed airflow pulverization method and then grafted using γ-glycidoxypropyltrimethoxysilane, followed by modification using trihexyltetradecylphosphonium chloride cation with supercritical carbon dioxide as the reaction medium (the obtained product was abbreviated as OGMMT). The modification of MMT was characterized by thermogravimetric analysis, X-ray diffraction (XRD), and scanning electron microscopy. The effect of organoclay content on microstructure and mechanical properties of PP/EAA/PP- g-MA/OGMMT nanocomposites was investigated by XRD, transmission electron microscopy, dynamic mechanical analysis, tensile strength, notched impact strength, flexural strength, and flexural modulus. The results show that the OGMMT has a high weight loss, a large d-spacing increment, and exfoliation predomination structure. The addition of compatibilizers benefited the formation of exfoliated structure and the dispersion of OGMMT in PP matrix, and hence, enhanced the storage modulus ( G′) below the glass transition temperature ( Tg), storage modulus ( G″), Tg, tensile strength, flexural strength, and flexural modulus of the nanocomposites. Furthermore, with the increasing OGMMT content, the nanocomposites exhibited very inconsiderable alteration in the clay dispersion level and enhanced G′ below the Tg, G″, tensile strength, flexural strength, and flexural modulus of the nanocomposites, whereas the Tg was invariant. As a whole, the introduction of compatibilizers and OGMMT led to the reduction of notched impact strength, which also nearly linearly decreased with increasing clay content.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2325
Author(s):  
Alexandre Tugirumubano ◽  
Sun Ho Go ◽  
Hee Jae Shin ◽  
Lee Ku Kwac ◽  
Hong Gun Kim

In this work, we aimed to manufacture and characterize carbon-fiber–polymer–metal-particles magnetic composites with a sandwichlike structure. The composites were manufactured by stacking the plain woven carbon fiber prepregs (or carbon-fiber-reinforced polymers (CFRP)) and layers of the FeSi particles. The layer of FeSi particles were formed by evenly distributing the FeSi powder on the surface of carbon fiber prepreg sheet. The composites were found to have better magnetic properties when the magnetic field were applied in in-plane (0°) rather than in through-thickness (90°), and the highest saturation magnetization of 149.71 A.m2/kg was achieved. The best inductance and permeability of 12.2 μH and 13.08 were achieved. The composites obviously exhibited mechanical strength that was good but lower than that of CFRP composite. The lowest tensile strength and lowest flexural strength were 306.98 MPa and 855.53 MPa, which correspond to 39.58% and 59.83% of the tensile strength and flexural strength of CFRP (four layers), respectively.


2003 ◽  
Vol 11 (5) ◽  
pp. 359-367 ◽  
Author(s):  
Mitsuhiro Shibata ◽  
Ryutoku Yosomiya ◽  
Noritaka Ohta ◽  
Atsushi Sakamoto ◽  
Hiroyuku Takeishi

The tensile properties of poly( ∊-caprolactone) (PCL) composites reinforced with short abaca fibres (length ca. 5 mm) prepared by melt mixing and subsequent injection molding were investigated and compared with PCL composites reinforced with glass fibres (GF). The influence of fibre content and surface esterification of the natural fibre on the tensile properties was evaluated. The tensile strength and moduli of all the PCL/abaca composites increased with increasing fibre content. All the PCL/abaca composites had a higher tensile strength than the PCL/GF composites when the fibre weight fraction was the same. The tensile strength of the PCL/abaca composites was improved by surface esterification of the abaca with acetic anhydride or butyric anhydride in the presence of pyridine, because of the increase in the interfacial adhesiveness between the matrix polyester and the esterificated fibre, as is obvious from the SEM photographs.


Sign in / Sign up

Export Citation Format

Share Document