Morphology and mechanical properties of polypropylene/ethylene acrylic acid/maleic anhybride-grafted polypropylene/organoclay nanocomposites

2016 ◽  
Vol 30 (3) ◽  
pp. 341-357 ◽  
Author(s):  
Qin Tian ◽  
Shuhao Qin ◽  
Fuzhong Wu ◽  
Huixin Jin ◽  
Ming Yang ◽  
...  

Polypropylene (PP)/ethylene acrylic acid (EAA)/maleic anhybride-grafted PP (PP- g-MA)/organoclay nanocomposites were prepared using the melt mixing technique, and PP- g-MA and EAA were employed as the compatibilizers. The sodium montmorillonite (MMT) were pretreated with high-speed airflow pulverization method and then grafted using γ-glycidoxypropyltrimethoxysilane, followed by modification using trihexyltetradecylphosphonium chloride cation with supercritical carbon dioxide as the reaction medium (the obtained product was abbreviated as OGMMT). The modification of MMT was characterized by thermogravimetric analysis, X-ray diffraction (XRD), and scanning electron microscopy. The effect of organoclay content on microstructure and mechanical properties of PP/EAA/PP- g-MA/OGMMT nanocomposites was investigated by XRD, transmission electron microscopy, dynamic mechanical analysis, tensile strength, notched impact strength, flexural strength, and flexural modulus. The results show that the OGMMT has a high weight loss, a large d-spacing increment, and exfoliation predomination structure. The addition of compatibilizers benefited the formation of exfoliated structure and the dispersion of OGMMT in PP matrix, and hence, enhanced the storage modulus ( G′) below the glass transition temperature ( Tg), storage modulus ( G″), Tg, tensile strength, flexural strength, and flexural modulus of the nanocomposites. Furthermore, with the increasing OGMMT content, the nanocomposites exhibited very inconsiderable alteration in the clay dispersion level and enhanced G′ below the Tg, G″, tensile strength, flexural strength, and flexural modulus of the nanocomposites, whereas the Tg was invariant. As a whole, the introduction of compatibilizers and OGMMT led to the reduction of notched impact strength, which also nearly linearly decreased with increasing clay content.

2014 ◽  
Vol 1025-1026 ◽  
pp. 215-220 ◽  
Author(s):  
Sasirada Weerasunthorn ◽  
Pranut Potiyaraj

Fumed silica particles (SiO2) were directly added into poly (butylene succinate) (PBS) by melt mixing process. The effects of amount of fumed silica particles on mechanical properties of PBS/fumed silica composites, those are tensile strength, tensile modulus, impact strength as well as flexural strength, were investigated. It was found that the mechanical properties decreased with increasing fumed silica loading (0-3 wt%). In order to increase polymer-filler interaction, fumed silica was treated with 3-glycidyloxypropyl trimethoxysilane (GPMS), and its structure was analyzed by FT-IR spectrophotometry. The PBS/modified was found to possess better tensile strength, tensile modulus, impact strength and flexural strength that those of PBS/fumed silica composites.


2014 ◽  
Vol 910 ◽  
pp. 153-156
Author(s):  
Ching Wen Lou ◽  
Jo Mei Liao ◽  
Zheng Lan Lin ◽  
Jia Horng Lin

This study uses carbon fibers (CF) to reinforce polylactic acid (PLA) matrices to form CF/PLA biocomposites. Tensile test, flexural test, and impact test are performed on biocomposites to evaluate their mechanical properties. The results of tests show that an increment of the CF content results in an increase in tensile strength, flexural strength, flexural modulus, and impact strength. The combination of 15 wt% CF provides the resulting biocomposites with a 72 % increase in tensile strength, a 322 % increase in flexural modulus, and a 96 % increase in impact strength.


2021 ◽  
Vol 11 (12) ◽  
pp. 5317
Author(s):  
Rafał Malinowski ◽  
Aneta Raszkowska-Kaczor ◽  
Krzysztof Moraczewski ◽  
Wojciech Głuszewski ◽  
Volodymyr Krasinskyi ◽  
...  

The need for the development of new biodegradable materials and modification of the properties the current ones possess has essentially increased in recent years. The aim of this study was the comparison of changes occurring in poly(ε-caprolactone) (PCL) due to its modification by high-energy electron beam derived from a linear electron accelerator, as well as the addition of natural fibers in the form of cut hemp fibers. Changes to the fibers structure in the obtained composites and the geometrical surface structure of sample fractures with the use of scanning electron microscopy were investigated. Moreover, the mechanical properties were examined, including tensile strength, elongation at break, flexural modulus and impact strength of the modified PCL. It was found that PCL, modified with hemp fibers and/or electron radiation, exhibited enhanced flexural modulus but the elongation at break and impact strength decreased. Depending on the electron radiation dose and the hemp fibers content, tensile strength decreased or increased. It was also found that hemp fibers caused greater changes to the mechanical properties of PCL than electron radiation. The prepared composites exhibited uniform distribution of the dispersed phase in the polymer matrix and adequate adhesion at the interface between the two components.


2021 ◽  
Vol 32 (2) ◽  
pp. 87-104
Author(s):  
Pui-Voon Yap ◽  
Ming-Yeng Chan ◽  
Seong-Chun Koay

This research work highlights the mechanical properties of multi-material by fused deposition modelling (FDM). The specimens for tensile and flexural test have been printed using polycarbonate (PC) material at different combinations of printing parameters. The effects of varied printing speed, infill density and nozzle diameter on the mechanical properties of specimens have been investigated. Multi-material specimens were fabricated with acrylonitrile butadiene styrene (ABS) as the base material and PC as the reinforced material at the optimum printing parameter combination. The specimens were then subjected to mechanical testing to observe their tensile strength, Young’s modulus, percentage elongation, flexural strength and flexural modulus. The outcome of replacing half of ABS with PC to create a multi-material part has been examined. As demonstrated by the results, the optimum combination of printing parameters is 60 mm/s printing speed, 15% infill density and 0.8 mm nozzle diameter. The combination of ABS and PC materials as reinforcing material has improved the tensile strength (by 38.46%), Young’s modulus (by 23.40%), flexural strength (by 23.90%) and flexural modulus (by 37.33%) while reducing the ductility by 14.31% as compared to pure ABS. The results have been supported by data and graphs of the analysed specimens.


2011 ◽  
Vol 236-238 ◽  
pp. 1725-1730 ◽  
Author(s):  
Wei Jen Chen ◽  
Ming Yuan Shen ◽  
Yi Luen Li ◽  
Chin Lung Chiang ◽  
Ming Chuen Yip

This study used carbon aerogels (CA) and phenolic resin in fixed proportations to produce nano high polymer resin, and used poly ehtylene oxide (PEO) as the modifying agent for phenolic resin to improve the mechanical properties of phenolic resin and promote the surface conductivity. The prepared nano high polymer resin and carbon cloth were made into nano-prepreg by using ultrasonic impregnation method, and a nano-prepreg composite material was prepared by using hot compacting and cut to test pieces to measure its mechanical properties and surface conductivity as well as the influence of temperature-humidity environment (85°C/168hr and 85°C/85%RH/168hr) on mechanical properties. The result showed that the surface conductivity increased by 64.55%, the tensile strength at room temperature increased by 35.7%, the flexural strength increased by 18.4%, and the impact strength increased by 101%. In hot environment (85°C/168hr), the tensile strength decreased by 23.8%, the flexural strength increased by 3.1%, and the impact strength increased by 84.6%. In high temperature-high humidity environment (85°C/85% RH/168hr), the tensile strength decreased by 29.6%, the flexural strength decreased by 17%, and the impact strength increased by 95.7%.Introduction


2011 ◽  
Vol 217-218 ◽  
pp. 347-352 ◽  
Author(s):  
Chun Xia He ◽  
Jun Jun Liu ◽  
Pan Fang Xue ◽  
Hong Yan Gu

The influence of the rice husks powder (RHP) content and its particle size distribution on the composite’s tensile strength, fracturing elongation ratio, flexural strength and flexural elastic modulus has been investigated. Respective water absorption and thermal properties of PP composites incorporated with different proportion of RHP have also been analyzed. The microstructure of fractured surfaces was further observed in scanning electron microscopy (SEM). The results showed that the composites with RHP of 245 μm have higher mechanical properties. The tensile strength and fracturing elongation ratio decrease with the increase of RHP content, and reach peak values in 30% RHP content. Water absorption and volume expansion ratio of the composite increase with the increasing of RHP content. Flexural strength and flexural modulus decrease after water absorption. When PHR content is low, the RHP particles are well distributed and the interface of RHP and PP is smooth. When PHR content is higher, the RHP particles tend to agglomerate, leading to poorer interface and lower mechanical properties, the composite failed with brittle fracture.


2011 ◽  
Vol 393-395 ◽  
pp. 76-79 ◽  
Author(s):  
Hai Bing Huang ◽  
Hu Hu Du ◽  
Wei Hong Wang ◽  
Hai Gang Wang

In this article, wood-plastic composites(WPCs) were manufactured with wood flour(80~120mesh、40~80mesh、20~40mesh、10~20mesh) combing with high density polyethylene(HDPE). Effects of the size of wood flour on mechanical properies and density of composites were investigated. Results showed that particle size of wood flour had an important effect on properitiesof WPCs. Change of mesh number had a outstanding effect on flexural modulus, tensile modulus and impact strength, howere, little effect on flexural strength and tensile strength. When mesh number of wood flour changed from 80~120mesh to 10~20mesh,flexural modulus and tensile modulus were respectively enhanced by 42.4% and 28.4%, respectively, and impact strength was decreased by 35.5%.Size of wood flour basically had no effect on density of composite within 10~120mesh. The use of wood flour or fiber as fillers and reinforcements in thermoplastics has been gaining acceptance in commodity plastics applications in the past few years. WPCs are currently experiencing a dramatic increase in use. Most of them are used to produce window/door profiles,decking,railing,ang siding. Wood thermoplastic composites are manufactured by dispering wood fiber or wood flour(WF) into molten plastics to form composite materials by processing techniques such as extrusion,themoforming, and compression or injection molding[1]. WPCs have such advantages[2]:(1)With wood as filler can improve heat resistance and strength of plastic, and wood has a low cost, comparing with inorganic filler, wood has a low density. Wood as strengthen material has a great potential in improving tensile strength and flexural modulus[3];(2) For composite of same volume, composites with wood as filler have a little abrasion for equipment and can be regenerated;(3)They have a low water absorption and low hygroscopic property, They are not in need of protective waterproof paint, at the same time, composite can be dyed and painted for them own needs;(4)They are superior to wood in resistantnce to crack、leaf mold and termite aspects, composites are the same biodegradation as wood;(5)They can be processed or connected like wood;(6)They can be processed into a lots of complicated shape product by means of extrusion or molding and so on, meanwhile, they have high-efficiency raw material conversion and itself recycle utilization[4]. While there are many sucesses to report in WPCs, there are still some issues that need to be addressed before this technology will reach its full potential. This technology involves two different types of materials: one hygroscopic(biomass) and one hydrophobic(plastic), so there are issues of phase separation and compatibilization[5]. In this paper, Effects of the size of wood powder on mechanical properties of WPCs were studied.


2019 ◽  
Vol 27 (1(133)) ◽  
pp. 37-44
Author(s):  
Marcin Barburski ◽  
Mariusz Urbaniak ◽  
Sanjeeb Kumar Samal

In this article, the mechanical properties of biaxial and triaxial woven aramid fabric and respective reinforced composites were investigated. Both fabrics had the same mass/m2. The first part of the experimental investigation was focused on the mechanical properties of different non-laminated aramid fabrics (biaxial and triaxial). The second part was concerned with the mechanical properties of composites made of a different combination of layers of fabric reinforced with an epoxy resin matrix in the order of biaxial+biaxial, trixial+triaxial and biaxial+triaxial. The composites were tested for tensile strength, flexural strength, strain and Young’s and flexural modulus. It can be seen from the results that the density and direction of the yarns are the most important parameters for determination of the strength of the fabric reinforced composite. The biaxial composite clearly showed better tensile strength, while the bi-tri axial order showed good flexural strength compared to the other composite combinations. These fabric reinforced composites have suitable applications in the areas of medical, protection and in the automotive industries.


2017 ◽  
Vol 25 (2) ◽  
pp. 355-361
Author(s):  
Thai Hoang ◽  
Do Van Cong

Composites based on polyethylene grafted acrylic acid (PE-g-AAc)/ethylene-co-vinylacetate copolymer (EVA)/calcium carbonate (CaCO3) were prepared by melt mixing. Relative melt viscosity, morphology, mechanical properties and thermostability of the composites were studied. The experimental results show that the presence of (CaCO3) activated by stearic acid (10-20 wt.%) changes lightly stable torque of polymer blend of PE-g-AAc/EVA. Use of modified PE improves compatibility of PE and EVA as well as makes the components disperse into each other better than in blends using unmodified PE. Tensile strength and elongation at break of both polymer blends decrease with presence of CaCO3. However, tensile strength of the composites of PE-g-AAc/EVA/CaCO3 is higher than that of composites of PE/EVA/CaCO3. Beside that, the composites of PE-g-AAc/EVA/CaCO3 have thermostability higher than the composites of PE/EVA/CaCO3.  


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Li Juan

The nanocomposites of polypropylene (PP)/graphene were prepared by melt blending. The effects of the dosage of graphene on the flow and mechanical properties of the nanocomposites were investigated. The morphologies of fracture surfaces were characterized through scanning electron microscopy (SEM). The graphene simultaneous enhanced tensile and impact properties of nanocomposites. A 3.22% increase in tensile strength, 39.8% increase in elongation at break, and 26.7% increase in impact strength are achieved by addition of only 1 wt.% of graphene loading. The morphological behavior indicates the fracture surface of PP/graphene is more rough than that of pure PP.


Sign in / Sign up

Export Citation Format

Share Document