High thermally stable thermosetting polyimides derived from a carborane-containing tetramine

2018 ◽  
Vol 31 (5) ◽  
pp. 548-556 ◽  
Author(s):  
Yuane Wu ◽  
Chen Feng ◽  
Jiping Yang ◽  
Gong Chen

In this study, we report the preparation of thermosetting polyimides (PIs) based on carborane-containing tetramine and their characterizations. The novel tetramine 1,2-bis(4-(3,5-diaminobenzoic acid phenyl ester))carborane (CBNH) was synthesized and characterized firstly. Then, it was used in the preparation of two kinds of branched imide oligomers via the method of thermal imidization. The cure behavior of the obtained phenylethynyl-terminated oligomers was investigated by differential scanning calorimetry. The effect of carborane substituent on the thermal properties of PIs was studied by comparing with a similar structure without the carborane group. The thermal properties of PIs and carbon fiber/PI composites were investigated by thermal gravimetric analysis and dynamic mechanical analysis, respectively. Because of the introduction of high steric hindrance of carborane structure, the resulting thermosets and carbon fiber/PI composites had excellent thermal property with a high char yield at 800°C (>66.5%) and a high glass transition temperature (up to 500°C), respectively.

2016 ◽  
Vol 29 (10) ◽  
pp. 1139-1147 ◽  
Author(s):  
Zi Sang ◽  
Tiantian Feng ◽  
Wenbin Liu ◽  
Jun Wang ◽  
Mehdi Derradji

A new series of aniline and aniline-mixed tetrafunctional fluorene-based oxazine monomers were synthesized using 2,7-hydroxy-9,9-bis-(4-hydroxyphenyl) fluorene, paraformaldehyde, and primary amines (including aniline or aniline mixed with n-butylamine or n-octylamine composition). Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy were used to characterize the structure of the monomers. The copolymers were obtained by adding the monomers into a typical monofunctional polybenzoxazine (phenol-aniline-based benzoxazine). Differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis were performed to study the thermal properties of the copolymers. The copolymers exhibited high glass transition temperature values (164–201°C). A good thermal stability was also obtained with a 5% weight loss temperature over 355°C and high char yields at 800°C (42–50%).


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Emi Govorčin Bajsić ◽  
Vesna Rek ◽  
Ivana Ćosić

The effect of the addition of talc on the morphology and thermal properties of blends of thermoplastic polyurethane (TPU) and polypropylene (PP) was investigated. The blends of TPU and PP are incompatible because of large differences in polarities between the nonpolar crystalline PP and polar TPU and high interfacial tensions. The interaction between TPU and PP can be improved by using talc as reinforcing filler. The morphology was observed by means of scanning electron microscopy (SEM). The thermal properties of the neat polymers and unfilled and talc filled TPU/PP blends were studied by using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The addition of talc in TPU/PP blends improved miscibility in all investigated TPU/T/PP blends. The DSC results for talc filled TPU/PP blends show that the degree of crystallinity increased, which is due to the nucleating effect induced by talc particles. The reason for the increased storage modulus of blends with the incorporation of talc is due to the improved interface between polymers and filler. According to TGA results, the addition of talc enhanced thermal stability. The homogeneity of the talc filled TPU/PP blends is better than unfilled TPU/PP blends.


2018 ◽  
Vol 33 (4) ◽  
pp. 435-450 ◽  
Author(s):  
Patrycja Bazan ◽  
Stanisław Kuciel ◽  
Mariola Sądej

The work has evaluated the possibility of the potential reinforcing of poly(oxymethylene) (POM) by basalt fibers (BFs) and influence of BFs addition on thermal properties. Two types of composites were produced by injection molding. There were 20 and 40 wt% long BFs content with an average length of 1 mm. The samples were made without using a compatibilizer. In the experimental part, the basic mechanical properties (tensile strength, modulus of elasticity, strain at break, flexural modulus, flexural strength, and deflection at 3.5% strain) of composites based on POM were determined. Tensile properties were also evaluated at three temperatures −20°C, 20°C, and 80°C. The density and Charpy impact of the produced composites were also examined. The influence of water absorption on mechanical properties was investigated. Thermal properties were conducted by the differential scanning calorimetry, thermal gravimetric analysis, and fourier transform infrared (FTIR)-attenuation total reflection (ATR) spectroscopy analysis. In order to make reference to the effects of reinforcement and determine the structure characteristics, scanning electron microscopy images were taken. The addition of 20 and 40 wt% by weight of fibers increases the strength and the stiffness of such composites by more than 30–70% in the range scale of temperature. Manufactured composites show higher thermal and dimensional stability in relation to neat POM.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 426
Author(s):  
Beatriz Adriana Salazar-Cruz ◽  
María Yolanda Chávez-Cinco ◽  
Ana Beatriz Morales-Cepeda ◽  
Claudia Esmeralda Ramos-Galván ◽  
José Luis Rivera-Armenta

The purpose of the present work was to prepare polypropylene (PP) matrix composited filled with chemically treated pistachio shell particles (PTx), and evaluate their effect on the composites’ thermal properties. PP-PTx composites were formulated in different PTx content (from 2 to 10 phr) in a mixing chamber, using the melt-mixing process. The PTx were chemically treated using a NaOH solution and infrared spectroscopy (FTIR). According to thermogravimetric analysis (TGA), the treatment of pistachio shell particles resulted in the remotion of lignin and hemicellulose. The thermal stability was evaluated by means of TGA, where the presence of PTx in composites showed a positive effect compared with PP pristine. Thermal properties such as crystallization temperature (Tc), crystallization enthalpy (∆Hc), melting temperature (Tm) and crystallinity were determinate by means differential scanning calorimetry (DSC); these results suggest that the PTx had a nucleation effect on the PP matrix, increasing their crystallinity. Dynamic mechanical analysis (DMA) showed that stiffness of the composites increase compared with that PP pristine, as well as the storage modulus, and the best results were found at a PTx concentration of 4 phr. At higher concentrations, the positive effect decreased; however, they were better than the reference PP.


2015 ◽  
Vol 05 (03) ◽  
pp. 1550018 ◽  
Author(s):  
P. Thomas ◽  
B. S. Dakshayini ◽  
H. S. Kushwaha ◽  
Rahul Vaish

Composites of poly(methyl methacrylate) (PMMA) and [Formula: see text] (STMO) were fabricated via melt mixing followed by hot pressing technique. These were characterized using X-ray diffraction (XRD), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), thermo mechanical analysis (TMA) and impedance analyser for their structural, thermal and dielectric properties. The coefficient of thermal expansion (CTE) was measured between 40°C and 100°C for pure PMMA is 115.2 ppm/°C, which was decreased to 78.58 ppm/°C when the STMO content was increased to 50 wt.% in PMMA. There was no difference in the glass transition ([Formula: see text]) temperature of the PMMA polymer and their composites. However, the FTIR analysis indicated possible interaction between the PMMA and STMO. The density and the hardness were increased as the STMO content increased in the PMMA matrix. Permittivity was found to be as high as 30.9 at 100 Hz for the PMMA+STMO-50 wt.% composites, indicating the possibility of using these materials for capacitor applications. The thermal stability of polymer was enhanced by incorporation of STMO fillers.


2018 ◽  
Vol 53 (8) ◽  
pp. 1123-1132 ◽  
Author(s):  
Bedriye Ucpinar ◽  
Ayse Aytac

This paper aims to study the effect of different surface coatings of carbon fiber on the thermal, mechanical, and morphological properties of carbon fiber reinforced poly(phenylene sulfide) composites. To this end, unsized and different surface-coated carbon fibers were used. Prepared poly(phenylene sulfide)/carbon fiber composites were characterized by using Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, tensile test, dynamic mechanical analysis, and scanning electron microscopy. Tensile strength values of the surfaced-coated carbon fibers reinforced poly(phenylene sulfide) composites are higher than the unsized carbon fiber reinforced poly(phenylene sulfide) composite. The highest tensile strength and modulus values were observed for the polyurethane-coated carbon fiber reinforcement. Dynamic mechanical analysis studies indicated that polyurethane-coated carbon fiber reinforced composite exhibited higher storage modulus and better adhesion than the others. Differential scanning calorimetry results show that melting and glass transition temperature of the composites did not change significantly. Scanning electron microscopic studies showed that polyurethane and epoxy-coated carbon fibers exhibited better adhesion with poly(phenylene sulfide).


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2636
Author(s):  
Tomasz M. Majka ◽  
Oskar Bartyzel ◽  
Konstantinos N. Raftopoulos ◽  
Joanna Pagacz ◽  
Krzysztof Pielichowski

Pyrolysis of the polypropylene/montmorillonite (PP/OMMT) nanocomposites allows for recovery of the filler that can be then re–used to produce PP/pyrolyzed MMT (PMMT) nanostructured composites. In this work, we discuss the thermal properties of PP/PMMT composites investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It has been found that effect of PMMT (5 wt. % and 10 wt. %) on matrix thermal stability occurs at temperatures above 300 °C. Addition of 5 wt. % and 10 wt. % of PMMT into polypropylene system gave good stabilization effect, as confirmed by the overall stabilization effect (OSE) values, which increased by 4% and 7%, respectively, compared to the control sample (PP). Interestingly, the presence of 1 wt. % and 3 wt. % of pyrolyzed clay stabilizes the system better than the same concentrations of organoclay added into polypropylene melt. DSC data revealed that pyrolyzed clay has still the same tendency as organoclay to enhance formation of the α and β crystalline PP phases only. The pyrolyzed MMT causes an improvement of the modulus in the glassy as well as rubbery regions, as confirmed by DMA results.


2013 ◽  
Vol 812 ◽  
pp. 192-197
Author(s):  
Wuttison Yasinee ◽  
Thongyai Supakanok ◽  
Wacharawichanant Sirirat ◽  
Piyasan Praserthdam

Acrylonitrile-butadiene rubber (NBR) or nitrile rubber is an unsaturated copolymer of butadiene and acrylonitrile. NBR has been widely used for fuel hoses, seals and gaskets due to its excellent oil and fuel resistance. Aiming to develop NBR which has resistance to oxygenated solvent, NBR with acrylonitrile content of 34 wt%, was blended with Acrylonitrile-butadiene-styrene (ABS) and Poly (Styrene-co-Acrylonitrile) (SAN) as binary polymer systems. The NBR/ABS and SAN blends were prepared by mechanical blending in the composition of 80/20, 70/30 and 60/40 w/w. The effects of ABS or SAN content on mechanical, morphological and thermal properties were investigated and compared with commercials NBR. Mechanical properties were determined using the tensile testing machine. The morphologies of polymer blends were investigated using scanning electron microscope (SEM). The thermal properties were examined using differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA) and dynamic mechanical analysis (DMA). It has been found that percent compatibility of ABS and SAN into NBR rich phase are 2.69 and 1.53 wt% respectively.


2011 ◽  
Vol 374-377 ◽  
pp. 1426-1429
Author(s):  
Xiao Meng Guo ◽  
Jian Qiang Li ◽  
Xian Sen Zeng ◽  
De Dao Hong

In this study, the thermal properties of a kind of new geotextile materials, so called controlled permeable formwork (CPF), were studied. Thermo-gravimetric analysis showed that the weight of CPF didn’t change much between 0~350 °C. Dynamic mechanical analysis showed that the storage modulus of CPF reduced from 25 MPa to around 10 MPa when the temperature rose to above 100 °C. The strength of sample decreased slightly with the increase of the temperature. The breaking elongation changed slightly with a maximum at 80 °C. The CPF showed excellent thermal stability and was suitable for general use in construction work.


2013 ◽  
Vol 12 (06) ◽  
pp. 1350039
Author(s):  
L. G. FURLAN ◽  
RICARDO V. B. OLIVEIRA ◽  
ANDRÉIA C. E. MELLO ◽  
SUSANA A. LIBERMAN ◽  
MAURO A. S. OVIEDO ◽  
...  

The preparation of high-impact polypropylene nanocomposites with different organo-montmorillonite (O-MMT) contents by means of meltprocessing was investigated. The nanocomposite properties were evaluated by transmission electron microscopy (TEM), flexural modulus, izod impact strength, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was noticed that the PP/O-MMT nanocomposites properties were affected by clay content. Exceptional improvements in impact strength were obtained (maximum of 185%) by the use of low O-MMT content. The results showed that higher enhancement on mechanical/thermal properties was obtained by 3 wt.% of O-MMT instead of higher quantities.


Sign in / Sign up

Export Citation Format

Share Document