Vehicle detection in severe weather based on pseudo-visual search and HOG–LBP feature fusion

Author(s):  
Zhangu Wang ◽  
Jun Zhan ◽  
Chunguang Duan ◽  
Xin Guan ◽  
Kai Yang

Vehicle detection in severe weather has always been a difficult task in the environmental perception of intelligent vehicles. This paper proposes a vehicle detection method based on pseudo-visual search and the histogram of oriented gradients (HOG)–local binary pattern (LBP) feature fusion. Using radar detection information, this method can directly extract the region of interest (ROI) of vehicles from infrared images by imitating human vision. Unlike traditional methods, the pseudo-visual search mechanism is independent of complex image processing and environmental interferences, thereby significantly improving the speed and accuracy of ROI extraction. More notably, the ROI extraction process based on pseudo-visual search can reduce image processing by 40%–80%, with an ROI extraction time of only 4 ms, which is far lower than the traditional algorithms. In addition, we used the HOG–LBP fusion feature to train the vehicle classifier, which improves the extraction ability of local and global features of vehicles. The HOG–LBP fusion feature can improve vehicle detection accuracy by 6%–9%, compared to a single feature. Experimental results show that the accuracy of vehicle detection is 92.7%, and the detection speed is 31 fps, which validates the feasibility of the proposed method and effectively improve the vehicle detection performance in severe weather

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3266
Author(s):  
Hongping Lu ◽  
Hui Jiang ◽  
Quansheng Chen

This study innovatively proposes a feature fusion technique to determine fatty acid content during rice storage. Firstly, a self-developed olfactory visualization sensor was used to capture the odor information of rice samples at different storage periods and a portable spectroscopy system was employed to collect the near-infrared (NIR) spectra during rice storage. Then, principal component analysis (PCA) was performed on the pre-processed olfactory visualization sensor data and the NIR spectra, and the number of the best principal components (PCs) based on the single technique model was optimized during the backpropagation neural network (BPNN) modeling. Finally, the optimal PCs were fused at the feature level, and a BPNN detection model based on the fusion feature was established to achieve rapid measurement of fatty acid content during rice storage. The experimental results showed that the best BPNN model based on the fusion feature had a good predictive performance where the correlation coefficient (RP) was 0.9265, and the root mean square error (RMSEP) was 1.1005 mg/100 g. The overall results demonstrate that the detection accuracy and generalization performance of the feature fusion model are an improvement on the single-technique data model; and the results of this study can provide a new technical method for high-precision monitoring of grain storage quality.


2015 ◽  
Vol 9 (1) ◽  
pp. 697-702
Author(s):  
Guodong Sun ◽  
Wei Xu ◽  
Lei Peng

The traditional quality detection method for transparent Nonel tubes relies on human vision, which is inefficient and susceptible to subjective factors. Especially for Nonel tubes filled with the explosive, missed defects would lead to potential danger in blasting engineering. The factors affecting the quality of Nonel tubes mainly include the uniformity of explosive filling and the external diameter of Nonel tubes. The existing detection methods, such as Scalar method, Analysis method and infrared detection technology, suffer from the following drawbacks: low detection accuracy, low efficiency and limited detection items. A new quality detection system of Nonel tubes has been developed based on machine vision in order to overcome these drawbacks. Firstly the system architecture for quality detection is presented. Then the detection method of explosive dosage and the relevant criteria are proposed based on mapping relationship between the explosive dosage and the gray value in order to detect the excessive explosive faults, insufficient explosive faults and black spots. Finally an algorithm based on image processing is designed to measure the external diameter of Nonel tubes. The experiments and practical operations in several Nonel tube manufacturers have proved the defect recognition rate of proposed system can surpass 95% at the detection speed of 100m/min, and system performance can meet the quality detection requirements of Nonel tubes. Therefore this quality detection method can save human resources and ensure the quality of Nonel tubes.


2019 ◽  
Vol 11 (24) ◽  
pp. 3006 ◽  
Author(s):  
Yafei Lv ◽  
Xiaohan Zhang ◽  
Wei Xiong ◽  
Yaqi Cui ◽  
Mi Cai

Remote sensing image scene classification (RSISC) is an active task in the remote sensing community and has attracted great attention due to its wide applications. Recently, the deep convolutional neural networks (CNNs)-based methods have witnessed a remarkable breakthrough in performance of remote sensing image scene classification. However, the problem that the feature representation is not discriminative enough still exists, which is mainly caused by the characteristic of inter-class similarity and intra-class diversity. In this paper, we propose an efficient end-to-end local-global-fusion feature extraction (LGFFE) network for a more discriminative feature representation. Specifically, global and local features are extracted from channel and spatial dimensions respectively, based on a high-level feature map from deep CNNs. For the local features, a novel recurrent neural network (RNN)-based attention module is first proposed to capture the spatial layout information and context information across different regions. Gated recurrent units (GRUs) is then exploited to generate the important weight of each region by taking a sequence of features from image patches as input. A reweighed regional feature representation can be obtained by focusing on the key region. Then, the final feature representation can be acquired by fusing the local and global features. The whole process of feature extraction and feature fusion can be trained in an end-to-end manner. Finally, extensive experiments have been conducted on four public and widely used datasets and experimental results show that our method LGFFE outperforms baseline methods and achieves state-of-the-art results.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Teng Liu ◽  
Cheng Xu ◽  
Hongzhe Liu ◽  
Xuewei Li ◽  
Pengfei Wang

Security perception systems based on 5G-V2X have become an indispensable part of smart city construction. However, the detection speed of traditional deep learning models is slow, and the low-latency characteristics of 5G networks cannot be fully utilized. In order to improve the safety perception ability based on 5G-V2X, increase the detection speed in vehicle perception. A vehicle perception model is proposed. First, an adaptive feature extraction method is adopted to enhance the expression of small-scale features and improve the feature extraction ability of small-scale targets. Then, by improving the feature fusion method, the shallow information is fused layer by layer to solve the problem of feature loss. Finally, the attention enhancement method is introduced to increase the center point prediction ability and solve the problem of target occlusion. The experimental results show that the UA-DETRAC data set has a good detection effect. Compared with the vehicle detection capability before the improvement, the detection accuracy and speed have been greatly improved, which effectively improves the security perception capability based on the 5G-V2X system, thereby promoting the construction of smart cities.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1838
Author(s):  
Chih-Wei Lin ◽  
Mengxiang Lin ◽  
Jinfu Liu

Classifying fine-grained categories (e.g., bird species, car, and aircraft types) is a crucial problem in image understanding and is difficult due to intra-class and inter-class variance. Most of the existing fine-grained approaches individually utilize various parts and local information of objects to improve the classification accuracy but neglect the mechanism of the feature fusion between the object (global) and object’s parts (local) to reinforce fine-grained features. In this paper, we present a novel framework, namely object–part registration–fusion Net (OR-Net), which considers the mechanism of registration and fusion between an object (global) and its parts’ (local) features for fine-grained classification. Our model learns the fine-grained features from the object of global and local regions and fuses these features with the registration mechanism to reinforce each region’s characteristics in the feature maps. Precisely, OR-Net consists of: (1) a multi-stream feature extraction net, which generates features with global and various local regions of objects; (2) a registration–fusion feature module calculates the dimension and location relationships between global (object) regions and local (parts) regions to generate the registration information and fuses the local features into the global features with registration information to generate the fine-grained feature. Experiments execute symmetric GPU devices with symmetric mini-batch to verify that OR-Net surpasses the state-of-the-art approaches on CUB-200-2011 (Birds), Stanford-Cars, and Stanford-Aircraft datasets.


2021 ◽  
Vol 13 (4) ◽  
pp. 812
Author(s):  
Jiahuan Zhang ◽  
Hongjun Song

Target detection on the sea-surface has always been a high-profile problem, and the detection of weak targets is one of the most difficult problems and the key issue under this problem. Traditional techniques, such as imaging, cannot effectively detect these types of targets, so researchers choose to start by mining the characteristics of the received echoes and other aspects for target detection. This paper proposes a false alarm rate (FAR) controllable deep forest model based on six-dimensional feature space for efficient and accurate detection of weak targets on the sea-surface. This is the first attempt at the deep forest model in this field. The validity of the model was verified on IPIX data, and the detection probability was compared with other proposed methods. Under the same FAR condition, the average detection accuracy rate of the proposed method could reach over 99.19%, which is 9.96% better than the results of the current most advanced method (K-NN FAR-controlled Detector). Experimental results show that multi-feature fusion and the use of a suitable detection framework have a positive effect on the detection of weak targets on the sea-surface.


Author(s):  
Zhenying Xu ◽  
Ziqian Wu ◽  
Wei Fan

Defect detection of electromagnetic luminescence (EL) cells is the core step in the production and preparation of solar cell modules to ensure conversion efficiency and long service life of batteries. However, due to the lack of feature extraction capability for small feature defects, the traditional single shot multibox detector (SSD) algorithm performs not well in EL defect detection with high accuracy. Consequently, an improved SSD algorithm with modification in feature fusion in the framework of deep learning is proposed to improve the recognition rate of EL multi-class defects. A dataset containing images with four different types of defects through rotation, denoising, and binarization is established for the EL. The proposed algorithm can greatly improve the detection accuracy of the small-scale defect with the idea of feature pyramid networks. An experimental study on the detection of the EL defects shows the effectiveness of the proposed algorithm. Moreover, a comparison study shows the proposed method outperforms other traditional detection methods, such as the SIFT, Faster R-CNN, and YOLOv3, in detecting the EL defect.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1426
Author(s):  
Chuanyang Liu ◽  
Yiquan Wu ◽  
Jingjing Liu ◽  
Jiaming Han

Insulator detection is an essential task for the safety and reliable operation of intelligent grids. Owing to insulator images including various background interferences, most traditional image-processing methods cannot achieve good performance. Some You Only Look Once (YOLO) networks are employed to meet the requirements of actual applications for insulator detection. To achieve a good trade-off among accuracy, running time, and memory storage, this work proposes the modified YOLO-tiny for insulator (MTI-YOLO) network for insulator detection in complex aerial images. First of all, composite insulator images are collected in common scenes and the “CCIN_detection” (Chinese Composite INsulator) dataset is constructed. Secondly, to improve the detection accuracy of different sizes of insulator, multi-scale feature detection headers, a structure of multi-scale feature fusion, and the spatial pyramid pooling (SPP) model are adopted to the MTI-YOLO network. Finally, the proposed MTI-YOLO network and the compared networks are trained and tested on the “CCIN_detection” dataset. The average precision (AP) of our proposed network is 17% and 9% higher than YOLO-tiny and YOLO-v2. Compared with YOLO-tiny and YOLO-v2, the running time of the proposed network is slightly higher. Furthermore, the memory usage of the proposed network is 25.6% and 38.9% lower than YOLO-v2 and YOLO-v3, respectively. Experimental results and analysis validate that the proposed network achieves good performance in both complex backgrounds and bright illumination conditions.


Author(s):  
Aijuan Li ◽  
Zhenghong Chen ◽  
Donghong Ning ◽  
Xin Huang ◽  
Gang Liu

In order to ensure the detection accuracy, an improved adaptive weighted (IAW) method is proposed in this paper to fuse the data of images and lidar sensors for the vehicle object’s detection. Firstly, the IAW method is proposed in this paper and the first simulation is conducted. The unification of two sensors’ time and space should be completed at first. The traditional adaptive weighted average method (AWA) will amplify the noise in the fusion process, so the data filtered with Kalman Filter (KF) algorithm instead of with the AWA method. The proposed IAW method is compared with the AWA method and the Distributed Weighted fusion KF algorithm in the data fusion simulation to verify the superiority of the proposed algorithm. Secondly, the second simulation is conducted to verify the robustness and accuracy of the IAW algorithm. In the two experimental scenarios of sparse and dense vehicles, the vehicle detection based on image and lidar is completed, respectively. The detection data is correlated and merged through the IAW method, and the results show that the IAW method can correctly associate and fuse the data of the two sensors. Finally, the real vehicle test of object vehicle detection in different environments is carried out. The IAW method, the KF algorithm, and the Distributed Weighted fusion KF algorithm are used to complete the target vehicle detection in the real vehicle, respectively. The advantages of the two sensors can give full play, and the misdetection of the target objects can be reduced with proposed method. It has great potential in the application of object acquisition.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250782
Author(s):  
Bin Wang ◽  
Bin Xu

With the rapid development of Unmanned Aerial Vehicles, vehicle detection in aerial images plays an important role in different applications. Comparing with general object detection problems, vehicle detection in aerial images is still a challenging research topic since it is plagued by various unique factors, e.g. different camera angle, small vehicle size and complex background. In this paper, a Feature Fusion Deep-Projection Convolution Neural Network is proposed to enhance the ability to detect small vehicles in aerial images. The backbone of the proposed framework utilizes a novel residual block named stepwise res-block to explore high-level semantic features as well as conserve low-level detail features at the same time. A specially designed feature fusion module is adopted in the proposed framework to further balance the features obtained from different levels of the backbone. A deep-projection deconvolution module is used to minimize the impact of the information contamination introduced by down-sampling/up-sampling processes. The proposed framework has been evaluated by UCAS-AOD, VEDAI, and DOTA datasets. According to the evaluation results, the proposed framework outperforms other state-of-the-art vehicle detection algorithms for aerial images.


Sign in / Sign up

Export Citation Format

Share Document