Hall effect on the entropy optimization of radiative magnetized Jeffrey nanofluid flow with homogeneous and heterogeneous reaction by rotating stretching disk

Author(s):  
Muhammad Rooman ◽  
Muhammad Asif Jan ◽  
Zahir Shah ◽  
Wejdan Deebani ◽  
Meshal Shutaywi

Purpose: The goal of this study is to investigate the entropy optimization of Jeffrey nanofluid flow with the homogeneous and heterogeneous reaction by stretching the rotating disk. The impact of Hall current is also being considered. The process of heat transmission is carried out. For heat transfer coefficient, temperature, concentration, velocity, Bejan number, and entropy generation rate and relevant equations are computed. The implications of various characteristics are investigated. The effect of emerging parameters of nanofluid flow is discussed and represented by a graph. To reduce partial differential equations into ordinary differential equations by using effective similarity transformation. The achieved non-linear system is resolved by the Homotopy analysis technique (HAM) to found the convergent solution of the designated flow problem. The impact of various pertinent parameters, i.e thermal radiations parameter, Brinkman number, Reynolds number, magnetic parameter, Hall Effects parameter, Jeffrey nanofluid parameters are discussed and presented by the graph. Engineering quantities such as Nusselt number and skin friction are also taken into account.

Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 492 ◽  
Author(s):  
Muhammad Jawad ◽  
Zahir Shah ◽  
Aurungzeb Khan ◽  
Waris Khan ◽  
Poom Kumam ◽  
...  

The impact of nonlinear thermal radiations rotating with the augmentation of heat transfer flow of time-dependent single-walled carbon nanotubes is investigated. Nanofluid flow is induced by a shrinking sheet within the rotating system. The impact of viscous dissipation is taken into account. Nanofluid flow is assumed to be electrically conducting. Similarity transformations are applied to transform PDEs (partial differential equations) into ODEs (ordinary differential equations). Transformed equations are solved by the homotopy analysis method (HAM). The radiative source term is involved in the energy equation. For entropy generation, the second law of thermodynamics is applied. The Bejan number represents the current investigation of non-dimensional entropy generation due to heat transfer and fluid friction. The results obtained indicate that the thickness of the boundary layer decreases for greater values of the rotation parameter. Moreover, the unsteadiness parameter decreases the temperature profile and increases the velocity field. Skin friction and the Nusselt number are also physically and numerically analyzed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bai Yu ◽  
Muhammad Ramzan ◽  
Saima Riasat ◽  
Seifedine Kadry ◽  
Yu-Ming Chu ◽  
...  

AbstractThe nanofluids owing to their alluring attributes like enhanced thermal conductivity and better heat transfer characteristics have a vast variety of applications ranging from space technology to nuclear reactors etc. The present study highlights the Ostwald-de-Waele nanofluid flow past a rotating disk of variable thickness in a porous medium with a melting heat transfer phenomenon. The surface catalyzed reaction is added to the homogeneous-heterogeneous reaction that triggers the rate of the chemical reaction. The added feature of the variable thermal conductivity and the viscosity instead of their constant values also boosts the novelty of the undertaken problem. The modeled problem is erected in the form of a system of partial differential equations. Engaging similarity transformation, the set of ordinary differential equations are obtained. The coupled equations are numerically solved by using the bvp4c built-in MATLAB function. The drag coefficient and Nusselt number are plotted for arising parameters. The results revealed that increasing surface catalyzed parameter causes a decline in thermal profile more efficiently. Further, the power-law index is more influential than the variable thickness disk index. The numerical results show that variations in dimensionless thickness coefficient do not make any effect. However, increasing power-law index causing an upsurge in radial, axial, tangential, velocities, and thermal profile.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 684
Author(s):  
Saeed Islam ◽  
Haroon Ur Rasheed ◽  
Kottakkaran Sooppy Nisar ◽  
Nawal A. Alshehri ◽  
Mohammed Zakarya

The current analysis deals with radiative aspects of magnetohydrodynamic boundary layer flow with heat mass transfer features on electrically conductive Williamson nanofluid by a stretching surface. The impact of variable thickness and thermal conductivity characteristics in view of melting heat flow are examined. The mathematical formulation of Williamson nanofluid flow is based on boundary layer theory pioneered by Prandtl. The boundary layer nanofluid flow idea yields a constitutive flow laws of partial differential equations (PDEs) are made dimensionless and then reduce to ordinary nonlinear differential equations (ODEs) versus transformation technique. A built-in numerical algorithm bvp4c in Mathematica software is employed for nonlinear systems computation. Considerable features of dimensionless parameters are reviewed via graphical description. A comparison with another homotopic approach (HAM) as a limiting case and an excellent agreement perceived.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1242
Author(s):  
Umair Khan ◽  
Aurang Zaib ◽  
Anuar Ishak ◽  
Fahad S. Al-Mubaddel ◽  
Sakhinah Abu Bakar ◽  
...  

The present study reveals the behavior of shear-thickening and shear-thinning fluids in magnetohydrodynamic flow comprising the significant impact of a hybrid nanofluid over a porous radially shrinking/stretching disc. The features of physical properties of water-based Ag/TiO2 hybrid nanofluid are examined. The leading flow problem is formulated initially in the requisite form of PDEs (partial differential equations) and then altered into a system of dimensionless ODEs (ordinary differential equations) by employing suitable variables. The renovated dimensionless ODEs are numerically resolved using the package of boundary value problem of fourth-order (bvp4c) available in the MATLAB software. The non-uniqueness of the results for the various pertaining parameters is discussed. There is a significant enhancement in the rate of heat transfer, approximately 13.2%, when the impact of suction governs about 10% in the boundary layer. Therefore, the heat transport rate and the thermal conductivity are greater for the new type of hybrid nanofluid compared with ordinary fluid. The bifurcation of the solutions takes place in the problem only for the shrinking case. Moreover, the sketches show that the nanoparticle volume fractions and the magnetic field delay the separation of the boundarylayer.


Author(s):  
Amar B. Patil ◽  
Vishwambhar S. Patil ◽  
Pooja P. Humane ◽  
Nalini S. Patil ◽  
Govind R. Rajput

The present work deals with chemically reacting unsteady magnetohydrodynamic Maxwell nanofluid flow past an inclined permeable stretching surface embedded in a porous medium with thermal radiation. The formulated governing partial differential equations conveying the flow model of Maxwell with Buongiorno modeled nanofluid is transformed into the system of highly non-linear ordinary differential equations via suitable similarity transformations; those equations are transmuted into an initial value problem and then solved numerically by a shooting approach with Runge–-Kutta fourth-order schema. To obtain the physical insight of the flow situation, the influence of associated parameters on the velocity, temperature, and concentration profiles is sketched graphically with the aid of MATLAB software. Furthermore, engineering quantities of interest are interpreted graphically. The computed numerical results are compared to estimate the validity of the achieved results; it has been found out that the computed results are highly accurate. The impact of the Maxwell parameter and inclination angle of the sheet on the velocity field is observed in decaying. Both thermal and solutal energy transport are progressive in nature as the Maxwell parameter and thermophoresis parameter grows, and a reverse trend is observed for Prandtl number.


2019 ◽  
Vol 30 (8) ◽  
pp. 3939-3955 ◽  
Author(s):  
Muhammad Ijaz Khan ◽  
Sohail Ahmad Khan ◽  
Tasawar Hayat ◽  
Muhammad Waqas ◽  
Ahmed Alsaedi

Purpose The purpose of this paper is to investigate the entropy optimization in magnetohydrodynamic hybrid nanomaterials flows toward a stretchable surface. The energy expression is modeled subject to dissipation, heat generation/absorption and Joule heating. Here silicon dioxide (SiO2) and molybdenum disulfide (MoS2) as nanoparticles and propylene glycol (C3H8O2) as base fluid, respectively. Furthermore, the authors discussed the comparative study of molybdenum disulfide and silicon dioxide diluted in propylene glycol. The total entropy optimization rate is computed through implementation of the second law of thermodynamics. Design/methodology/approach The nonlinear partial differential system is reduced to an ordinary one through implementation of transformation. Newton built-in shooting method is used for computational results for the given system. Influences of various flow variables on the temperature, Bejan number, velocity, concentration and entropy generation rate are examined graphically for both nanoparticles (SiO2 and MoS2). Gradients of velocity and temperature are computed numerically for various physical parameters. Also, take the comparison between the present and previously published results in tabulated form. Findings For higher estimation of ϕ both temperature and velocity are enhanced. Entropy optimization and Bejan number have the opposite outcome for viscosity parameter. Temperature and velocity have opposite behaviors for larger values of magnetic parameter. Molybdenum disulfide (MoS2) is more efficient than silicon dioxide (SiO2). Originality/value No such work is yet published in the literature.


Author(s):  
K. Kumaraswamy Naidu ◽  
D. Harish Babu ◽  
S. Harinath Reddy ◽  
P. V. Satya Narayana

Abstract In this study, the impact of thermal radiation and partial slip on magnetohydrodynamic flow of the Jeffrey nanofluid comprising motile gyrotactic microorganisms via vertical stretching surface is analyzed. The governing partial differential equations are reformed to a system of coupled ordinary differential equations by utilizing the similarity transformations. The transformed equations are of order four, which are complex to solve analytically and hence, the coupled system is solved computationally by using the shooting technique along the Runge–Kutta integrated scheme. The ramifications of different thermophysical parameters on the density of gyrotactic microorganisms, Jeffrey nanofluid velocity, nanoparticles concentration, temperature, Sherwood number, and Nusselt number are illustrated graphically. Comparing this study with the results already published favors the validity of this study. It is established that the Nusselt number is boosted on enhancing the thermal radiation parameter, and the reverse trend has been observed on increasing the Richardson number, whereas the gyrotactic microorganisms density is more in case of viscous nanofluid compared to the Jeffrey nanofluid.


Author(s):  
BJ Gireesha ◽  
CT Srinivasa ◽  
NS Shashikumar ◽  
Madhu Macha ◽  
JK Singh ◽  
...  

The combined effects of the magnetic field, suction/injection, and convective boundary condition on heat transfer and entropy generation in an electrically conducting Casson fluid flow through an inclined porous microchannel are scrutinized. The temperature-dependent heat source is also accounted. Numerical simulation for the modelled problem is presented via Runge–Kutta–Felhberg-based shooting technique. Special attention is given to analyze the impact of involved parameters on the profiles of velocity [Formula: see text], temperature [Formula: see text], entropy generation [Formula: see text], and Bejan number [Formula: see text]. It is established that entropy generation rate decreases at the walls with an increase in Hartmann number [Formula: see text], while it increases at the center region of the microchannel.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1395
Author(s):  
Hammad Alotaibi ◽  
Mohamed R. Eid

This paper discusses the Darcy–Forchheimer three dimensional (3D) flow of a permeable nanofluid through a convectively heated porous extending surface under the influences of the magnetic field and nonlinear radiation. The higher-order chemical reactions with activation energy and heat source (sink) impacts are considered. We integrate the nanofluid model by using Brownian diffusion and thermophoresis. To convert PDEs (partial differential equations) into non-linear ODEs (ordinary differential equations), an effective, self-similar transformation is used. With the fourth–fifth order Runge–Kutta–Fehlberg (RKF45) approach using the shooting technique, the consequent differential system set is numerically solved. The influence of dimensionless parameters on velocity, temperature, and nanoparticle volume fraction profiles is revealed via graphs. Results of nanofluid flow and heat as well as the convective heat transport coefficient, drag force coefficient, and Nusselt and Sherwood numbers under the impact of the studied parameters are discussed and presented through graphs and tables. Numerical simulations show that the increment in activation energy and the order of the chemical reaction boosts the concentration, and the reverse happens with thermal radiation. Applications of such attractive nanofluids include plastic and rubber sheet production, oil production, metalworking processes such as hot rolling, water in reservoirs, melt spinning as a metal forming technique, elastic polymer substances, heat exchangers, emollient production, paints, catalytic reactors, and glass fiber production.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Saima Riasat ◽  
Yan Zhang ◽  
Kottakkaran Sooppy Nisar ◽  
Irfan Anjum Badruddin ◽  
...  

AbstractThe present investigation involves the Hall current effects past a low oscillating stretchable rotating disk with Joule heating and the viscous dissipation impacts on a Ferro-nanofluid flow. The entropy generation analysis is carried out to study the impact of rotational viscosity by applying a low oscillating magnetic field. The model gives the continuity, momentum, temperature, magnetization, and rotational partial differential equations. These equations are transformed into the ODEs and solved by using bvp4c MATLAB. The graphical representation of arising parameters such as effective magnetization and nanoparticle concentration on thermal profile, velocity profile, and rate of disorder along with Bejan number is presented. Drag force and the heat transfer rate are given in the tabular form. It is comprehended that for increasing nanoparticle volume fraction and magnetization parameter, the radial, and tangential velocity reduce while thermal profile surges. The comparison of present results for radial and axial velocity profiles with the existing literature shows approximately the same results.


Sign in / Sign up

Export Citation Format

Share Document