Influence of strut on cavity at subsonic speeds: Ignition characteristics

Author(s):  
Junjie Miao ◽  
Yuxin Fan ◽  
Tianchi Liu

In high-speed airflow, the use of cavity and struts in combination can improve fuel distribution and flame-stabilization, but may weaken the ignition performance. Herein, the lean ignition characteristics of several cavity–strut flame holders in a tandem turbine-based combined cycles combustor are experimentally investigated with the flow fields by using particle image velocimetry and high-speed chemiluminescence imaging techniques. Additionally, the effects of the strut structure parameters on the lean ignition performance in the cavity are studied. Experimental results indicate that changes in structural parameters have the opposite effects on the ignition performance and the flame-propagation performance. Reducing the strut inclination angle has a contrary function with the decrease in the cavity–strut space, which also transforms the flame-stabilizing mechanism between strut-stabilizing and cavity-stabilizing, accompanied by the flame morphology behind strut changes from no-flame to intermittent-flame, and finally continuous-flame. The lean ignition limit changes with the structure parameters, mainly due to the inverse change in the mass exchange rate and cavity residence time. Compared with the single cavity, the proper cavity–strut combined structure has a wider lean ignition limit at high subsonic speeds due to the advantage of simultaneously increasing the mass exchange rate and cavity residence time.

Author(s):  
Junjie Miao ◽  
Yuxin Fan

Cavity–strut combined flame holder is a promising choice for turbine-based combined cycle engines with its excellent fuel distribution and flame stabilization. In this paper, the effects of the strut structure parameters on the flow characteristics in the cavity were investigated by using particle image velocimetry and numerical simulation. Experimental and numerical results show that the struts induce complex three-dimensional flow patterns, which have a significant influence on the cavity transverse vortex. The relative position between the cavity and the strut influences the critical length-to-depth ratio of the open cavity reverting to the closed cavity. The mass exchange rate of the cavity decreases with the increase in the space between the cavity and the struts, while it increases with the strut inclination angle increases. The variation law of mean cavity residence time with the structure parameters is exactly opposite to that of the mass exchange rate. Compared with a single cavity, at a high subsonic speed, the cavity–strut combined structure has the advantage of increasing the mass exchange rate and cavity residence time simultaneously.


2010 ◽  
Vol 426-427 ◽  
pp. 643-647
Author(s):  
Bin Jiang ◽  
Wen Chao Xu ◽  
Wei Zhang ◽  
Min Li Zheng

This work investigated safety and stability of high speed milling cutter using FEM and Penghuanwu discriminance, propounded safety and stability criterion of cutter, and analyzed absolute degree of incidence on safety and stability of cutter using grey system theory, the influence laws of structure parameters and their interaction on safety and stability of cutter were acquired. Experiments of idling and high speed milling were carried out, analyzed the impact degree of structural parameters on safety and stability of cutter, and results validated the dependability and validity of safety and stability cutting criterion.


2021 ◽  
Author(s):  
Xufeng Zhao ◽  
Changhe Li ◽  
Tianbiao Yu

Abstract In order to improving the grinding performance of laser cladding textured grinding tool (LCTGT) under high speed grinding process, the topography shape (height, width and height/width ratio) of laser cladding grinding layers on LCTGT were designed with RSM (response surface method) through optimizing laser cladding processing parameters and laser cladding layers structure parameters that based on Archimedes helix coefficients. The LCTGTs were produced with optimized laser cladding parameters and structural parameters for laser cladding grinding layers. The results showed that laser cladding parameters of 397W of laser power, 3.56 mm/s of the laser scanning speed and 0.91 r/min of powder feeding rate and structure parameters of laser cladding layers of 6-10-10 can meet requirement.


Author(s):  
Arman Ahamed Subash ◽  
Ronald Whiddon ◽  
Robert Collin ◽  
Marcus Aldén ◽  
Atanu Kundu ◽  
...  

Experiments were performed on the central pilot body (RPL-rich-pilot-lean) of Siemens prototype 4th generation DLE burner to investigate the flame behavior at atmospheric pressure condition when varying equivalence ratio, residence time and co-flow temperature. The flame at the RPL burner exit was investigated applying OH planar laser-induced fluorescence (PLIF) and high-speed chemiluminescence imaging. The results from chemiluminescence imaging and OH PLIF show that the size and shape of the flame are clearly affected by the variation in operating conditions. For both preheated and non-preheated co-flow cases, at lean equivalence ratios combustion starts early inside the burner and primary combustion comes to near completion inside the burner if residence time permits. For rich conditions, the unburnt fuel escapes out through the burner exit along with primary combustion products and combustion subsequently restarts downstream the burner at leaner condition and in a diffuse-like manner. For preheated co-flow, most of the operating conditions yield similar OH PLIF distributions and the flame is stabilizing at approximately the same spatial positions. It reveals the importance of the preheating co-flow for flame stabilization. Flame instabilities were observed and Proper Orthogonal Decomposition (POD) is applied to time resolved chemiluminescence data to demonstrate how the flame is oscillating. Preheating has strong influence on the oscillation frequency. Additionally, combustion emissions were analyzed to observe the effect on NOX level for variation in operating conditions.


Author(s):  
Yongmei Liu ◽  
Rajen Dias

Abstract Study presented here has shown that Infrared thermography has the potential to be a nondestructive analysis tool for evaluating package sublayer defects. Thermal imaging is achieved by applying pulsed external heating to the package surface and monitoring the surface thermal response as a function of time with a high-speed IR camera. Since the thermal response of the surface is affected by the defects such as voids and delamination below the package surface, the technique can be used to assist package defects detection and analysis.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1548
Author(s):  
Jiuling Hu ◽  
Lianjin Hong ◽  
Lili Yin ◽  
Yu Lan ◽  
Hao Sun ◽  
...  

At present, high-speed underwater acoustic communication requires underwater transducers with the characteristics of low frequency and broadband. The low-frequency transducers also are expected to be low-frequency directional for realization of point-to-point communication. In order to achieve the above targets, this paper proposes a new type of flextensional transducer which is constructed of double mosaic piezoelectric ceramic rings and spherical cap metal shells. The transducer realizes broadband transmission by means of the coupling between radial vibration of the piezoelectric rings and high-order flexural vibration of the spherical cap metal shells. The low-frequency directional transmission of the transducer is realized by using excitation signals with different amplitude and phase on two mosaic piezoelectric rings. The relationship between transmitting voltage response (TVR), resonance frequency and structural parameters of the transducer is analyzed by finite element software COMSOL. The broadband performance of the transducer is also optimized. On this basis, the low-frequency directivity of the transducer is further analyzed and the ratio of the excitation signals of the two piezoelectric rings is obtained. Finally, a prototype of the broadband ring flextensional underwater transducer is fabricated according to the results of simulation. The electroacoustic performance of the transducer is tested in an anechoic water tank. Experimental results show that the maximum TVR of the transducer is 147.2 dB and the operation bandwidth is 1.5–4 kHz, which means that the transducer has good low-frequency, broadband transmission capability. Meanwhile, cardioid directivity is obtained at 1.4 kHz and low-frequency directivity is realized.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5279
Author(s):  
Dong-Hoon Kwak ◽  
Guk-Jin Son ◽  
Mi-Kyung Park ◽  
Young-Duk Kim

The consumption of seaweed is increasing year by year worldwide. Therefore, the foreign object inspection of seaweed is becoming increasingly important. Seaweed is mixed with various materials such as laver and sargassum fusiforme. So it has various colors even in the same seaweed. In addition, the surface is uneven and greasy, causing diffuse reflections frequently. For these reasons, it is difficult to detect foreign objects in seaweed, so the accuracy of conventional foreign object detectors used in real manufacturing sites is less than 80%. Supporting real-time inspection should also be considered when inspecting foreign objects. Since seaweed requires mass production, rapid inspection is essential. However, hyperspectral imaging techniques are generally not suitable for high-speed inspection. In this study, we overcome this limitation by using dimensionality reduction and using simplified operations. For accuracy improvement, the proposed algorithm is carried out in 2 stages. Firstly, the subtraction method is used to clearly distinguish seaweed and conveyor belts, and also detect some relatively easy to detect foreign objects. Secondly, a standardization inspection is performed based on the result of the subtraction method. During this process, the proposed scheme adopts simplified and burdenless calculations such as subtraction, division, and one-by-one matching, which achieves both accuracy and low latency performance. In the experiment to evaluate the performance, 60 normal seaweeds and 60 seaweeds containing foreign objects were used, and the accuracy of the proposed algorithm is 95%. Finally, by implementing the proposed algorithm as a foreign object detection platform, it was confirmed that real-time operation in rapid inspection was possible, and the possibility of deployment in real manufacturing sites was confirmed.


1989 ◽  
Author(s):  
Wang Kuilu ◽  
Lu Ming ◽  
Liu Cunfu ◽  
Kang Dechun

2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Christoph A. Schmalhofer ◽  
Peter Griebel ◽  
Manfred Aigner

The use of highly reactive hydrogen-rich fuels in lean premixed combustion systems strongly affects the operability of stationary gas turbines (GT) resulting in higher autoignition and flashback risks. The present study investigates the autoignition behavior and ignition kernel evolution of hydrogen–nitrogen fuel mixtures in an inline co-flow injector configuration at relevant reheat combustor operating conditions. High-speed luminosity and particle image velocimetry (PIV) measurements in an optically accessible reheat combustor are employed. Autoignition and flame stabilization limits strongly depend on temperatures of vitiated air and carrier preheating. Higher hydrogen content significantly promotes the formation and development of different types of autoignition kernels: More autoignition kernels evolve with higher hydrogen content showing the promoting effect of equivalence ratio on local ignition events. Autoignition kernels develop downstream a certain distance from the injector, indicating the influence of ignition delay on kernel development. The development of autoignition kernels is linked to the shear layer development derived from global experimental conditions.


Sign in / Sign up

Export Citation Format

Share Document