Effect of ultrasound on the structural characteristics of fresh skim milk

2019 ◽  
Vol 26 (3) ◽  
pp. 222-230
Author(s):  
Jitao Yang ◽  
Min Yang ◽  
Juanjuan Qin ◽  
Qiubing Zeng ◽  
Yucheng Wang ◽  
...  

The structural changes of skim milk caused by sonication were evaluated by particle size, zeta-potential, turbidity, scanning electron microscopy, Fourier transform infrared spectroscopy, and intrinsic and 8-anilino-1-naphthalenesulfonic acid sodium salt fluorescence properties. The results showed that the particle size and zeta-potential of skim milk remained constant with 1 min ultrasonication, and increased significantly when the duration of sonication was extended to 3 min. With 3–10 min ultrasonic treatment, the diameter and net charge of particles in skim milk changed scarcely. According to the topography, the integrity of casein micelles was not damaged by 30 min sonication, but the turbidity decreased sharply with sonication above 5 min. The secondary structure of protein in skim milk changed after 1 min sonication, shown by a significant increase of α-helix content and decrease in the irregularity of β-sheet. The intrinsic fluorescence intensity of skim milk with 1 min sonication increased dramatically with a shift in the maximum emission wavelength. The fluorescence properties revealed that the spatial structure of protein in skim milk changed by sonication.

Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 48
Author(s):  
Ana M. Herrero ◽  
Claudia Ruiz-Capillas

Considerable attention has been paid to emulsion gels (EGs) in recent years due to their interesting applications in food. The aim of this work is to shed light on the role played by chia oil in the technological and structural properties of EGs made from soy protein isolates (SPI) and alginate. Two systems were studied: oil-free SPI gels (SPI/G) and the corresponding SPI EGs (SPI/EG) that contain chia oil. The proximate composition, technological properties (syneresis, pH, color and texture) and structural properties using Raman spectroscopy were determined for SPI/G and SPI/EG. No noticeable (p > 0.05) syneresis was observed in either sample. The pH values were similar (p > 0.05) for SPI/G and SPI/EG, but their texture and color differed significantly depending on the presence of chia oil. SPI/EG featured significantly lower redness and more lightness and yellowness and exhibited greater puncture and gel strengths than SPI/G. Raman spectroscopy revealed significant changes in the protein secondary structure, i.e., higher (p < 0.05) α-helix and lower (p < 0.05) β-sheet, turn and unordered structures, after the incorporation of chia oil to form the corresponding SPI/EG. Apparently, there is a correlation between these structural changes and the textural modifications observed.


2019 ◽  
Vol 14 (8) ◽  
pp. 523-536
Author(s):  
Maryam Saleh ◽  
Jamileh Nowroozi ◽  
Fatemeh Fotouhi ◽  
Behrokh Farahmand

Aim: The present study evaluated the structural changes resulting from the interaction between a recombinant influenza A virus M2 protein and aluminum hydroxide adjuvant to investigate the antigen for further immunological studies. Materials & methods: Membrane protein II was produced from the H1N1 subtype of human influenza A virus. The interaction between M2 protein and alum inum hydroxide adjuvant was evaluated by physicochemical techniques including scanning electron microscope, UV-Vis spectra, Fourier-transform infrared spectroscopy and circular dichroism spectroscopy. Results: Physicochemical methods showed high-level protein adsorption and accessibility to the effective parts of the protein. Conclusion: It was concluded that M2 protein secondary structural perturbations, including the α-helix-to-β-sheet transition, enhanced its mechanical properties toward adsorption.


1996 ◽  
Vol 63 (3) ◽  
pp. 387-404 ◽  
Author(s):  
Theresa Wade ◽  
James K. Beattie ◽  
William N. Rowlands ◽  
Mary-Ann Augustin

SummaryMeasurements of the zeta potential and particle size of casein micelles in skim milk suspensions at natural and lower pH have been made using the technique of electroacoustics. This technique requires no dilution or change of environment of the casein micelles. The zeta potential obtained at natural pH for a commercial skim milk suspension was −18 mV; it became less negative with decreasing pH. The median particle size observed at natural pH for a commercial skim milk suspension was 0·2 εm, in good agreement with previously reported values. The particle size increased as the pH was decreased.


2020 ◽  
pp. 108201322096261
Author(s):  
Jia Li ◽  
Bixiang Wang ◽  
Yang He ◽  
Liankui Wen ◽  
Hailong Nan ◽  
...  

Anthocyanins have good physiological functions, but they are unstable. The interaction between anthocyanins and proteins can improve the stability, nutritional and functional properties of the complex. This paper reviews the structural changes of complex of anthocyanins interacting with proteins from different sources. By circular dichroism (CD) spectroscopy, it was found that the contents of α-helix (from 15.90%−42.40% to 17.60%−52.80%) or β-sheet (from 29.00%−50.00% to 29.40%−57.00%) of the anthocyanins–proteins complex increased. Fourier transform infrared spectroscopy showed that the regions of amide I (from 1627.87−1641.41 cm−1 to 1643.34−1651.02 cm−1) and amide II (from 1537.00−1540.25 cm−1 to 1539.00−1543.75 cm−1) of anthocyanins–proteins complex were shifted. Fluorescence spectroscopy showed that the fluorescence intensity of the complex decreased from 150−5100 to 40−3900 a.u. The thermodynamic analysis showed that there were hydrophobic interactions, electrostatic and hydrogen bonding interactions between anthocyanins and proteins. The kinetic analysis showed that the half-life and activation energy of the complex increased. The stability, antioxidant, digestion, absorption, and emulsification of the complex were improved. This provides a reference for the study and application of anthocyanins and proteins interactions.


Antibiotics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 85 ◽  
Author(s):  
Guanzhu Chen ◽  
Yuxi Miao ◽  
Chengbang Ma ◽  
Mei Zhou ◽  
Zhanzhong Shi ◽  
...  

Brevinins are an important antimicrobial peptide (AMP) family discovered in the skin secretions of Ranidae frogs. The members demonstrate a typical C-terminal ranabox, as well as a diverse range of other structural characteristics. In this study, we identified a novel brevinin-2 peptide from the skin secretion of Sylvirana guentheri, via cloning transcripts, and identifying the expressed mature peptide, in the skin secretion. The confirmed amino acid sequence of the mature peptide was designated brevinin-2GHk (BR2GK). Moreover, as a previous study had demonstrated that the N-terminus of brevinin-2 is responsible for exerting antimicrobial activity, we also designed a series of truncated derivatives of BR2GK. The results show that the truncated derivatives exhibit significantly improved antimicrobial activity and cytotoxicity compared to the parent peptide, except a Pro14 substituted analog. The circular dichroism (CD) analysis of this analog revealed that it did not fold into a helical conformation in the presence of either lipopolysaccharides (LPS) or TFE, indicating that position 14 is involved in the formation of the α-helix. Furthermore, three more analogs with the substitutions of Ala, Lys and Arg at the position 14, respectively, revealed the influence on the membrane disruption potency on bacteria and mammalian cells by the structural changes at this position. Overall, the N-terminal 25-mer truncates demonstrated the potent antimicrobial activity with low cytotoxicity.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2217-2217
Author(s):  
Rustem I. Litvinov ◽  
Dzhigangir A. Faizullin ◽  
Yuriy F. Zuev ◽  
Artyom Zhmurov ◽  
Olga Kononova ◽  
...  

Abstract Abstract 2217 A new field of biomedical research, biomechanics of hemostasis and thrombosis, has been quickly developing over the past few years. The mechanical properties of fibrin are essential in vivo for the ability of clots to stop bleeding in flowing blood but also determine the likelihood of obstructive thrombi that cause heart attack and stroke. Despite such critical importance, the structural basis of clot mechanics is not well understood. The structural changes underlying deformation of fibrin polymer occur at different spatial scales from macroscopic to submolecular, including molecular unfolding, about which relatively little is known. In this work, fibrin mechanics was studied with respect to molecular structural changes during fibrin deformation. The results of atomic force microscopy-induced unfolding of fibrinogen monomers and oligomers were correlated with force-extension curves obtained using Molecular Dynamics simulations. The mechanical unraveling of fibrin(ogen) was shown to be determined by molecular transitions that couple reversible extension-contraction of the α-helical coiled-coil regions with unfolding of the terminal γ-nodules. The coiled-coils act as molecular springs to buffer external mechanical perturbations, transmitting and distributing force as the γ-nodules unfold. Unfolding of the γ-nodules, stabilized by strong inter-domain interactions with the neighboring β-nodules, was characterized by an average force of ∼90 pN and peak-to-peak distance of ∼25 nm. All-atom Molecular Dynamics simulations further showed a transition from α-helix to β-sheet at higher extensions. To reveal the force-induced α-helix to β-sheet transition in fibrin experimentally, we used Fourier Transform infrared spectroscopy of hydrated fibrin clots made from human blood plasma. When extended or compressed, fibrin showed a shift of absorbance intensity mainly in the amide I band but also in the amide II and III bands, demonstrating an increase of the β-sheets and a corresponding reduction of the α-helices. These structural conversions correlated directly with the strain or pressure and were partially reversible at the conditions applied. The spectra characteristic of the nascent inter-chain β-sheets were consistent with protein aggregation and fiber bundling during clot deformation observed using scanning electron microscopy. Additional information on the mechanically induced α-helix to β-sheet transition in fibrin was obtained from computational studies of the forced elongation of the entire fibrin molecule and its α-helical coiled-coil portions. We found that upon force application, the coiled-coils undergo ∼5–50 nm extension and 360-degree unwinding. The force-extension curves for the coiled-coils showed three distinct regimes: the linear elastic regime, the constant-force plastic regime, and the non-linear regime. In the linear regime, the coiled-coils unwind but not unfold. In the plastic regime, the triple α-helical segments rewind and re-unwind while undergoing a non-cooperative phase transition to form parallel β-sheets. We conclude that under extension and/or compression an α-helix to β-sheet conversion of the coiled-coils occurs in the fibrin clot as a part of forced protein unfolding. These regimes of forced elongation of fibrin provide important qualitative and quantitative characteristics of the molecular mechanisms underlying fibrin mechanical properties at the microscopic and macroscopic scales. Furthermore, these structural characteristics of the dynamic mechanical behavior of fibrin at the nanometer scale determine whether or not clots have the strength to stanch bleeding and if thrombi become obstructive or embolize. Finally, this knowledge of the functional significance of different domains of fibrin(ogen) suggests new approaches for modulation of these properties as potential therapeutic interventions. Disclosures: No relevant conflicts of interest to declare.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 161 ◽  
Author(s):  
Binglin Liu ◽  
Maosong Wang ◽  
Yulei Du ◽  
Jingxiao Li

TiAl-based alloys are promising light weight structural materials for high temperature applications in the field of aerospace. Recently, fabrication technologies starting from powders including powder metallurgy and additive manufacturing have been developed to overcome the difficulties in the processing, machining and shaping of TiAl-based alloys. Spherical alloy powders with different particle size distributions are usually used in these fabrication techniques. The purpose of this study is to reveal the size-dependent structural properties of a high-Nb TiAl powder for these fabrication technologies starting from powders. A high-Nb TiAl pre-alloyed powder with nominal composition of Ti-48Al-2Cr-8Nb (at. %) was prepared by the electrode induction melting gas atomization (EIGA) method. The phase structure and morphology of the as-atomized powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The size-dependent structural changes of the as-atomized powders with different sizes were studied by differential scanning calorimetry (DSC) and in situ high temperature XRD. It was found that with decreasing the powder size, the content of the γ-TiAl phase decreases and the α2-Ti3Al phase increases. The α2-Ti3Al to γ-TiAl phase transformation was found in the temperature range of 600–770 °C. Based on the present work, the structural characteristics of TiAl powders are strongly dependent on their particle size, which should be considered in optimizing the process parameters of TiAl alloys fabricated from powders.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3273
Author(s):  
Runfang Wang ◽  
Suisui Jiang ◽  
Yujin Li ◽  
Yunsheng Xu ◽  
Tietao Zhang ◽  
...  

To expand the utilization of oyster protein (OP), the effects of high pressure (100 to 500 MPa) on chemical forces, structure, microstructure, and digestibility properties were investigated. High pressure (HP) treatment enhanced the electrostatic repulsion (from −13.3Control to −27.8HP200 mV) between protein molecules and avoided or retarded the formation of protein aggregates. In addition, the HP treated samples showed uniform distribution and small particle size. The changes in electrostatic interaction and particle size contributed to the improvement of solubility (from 10.53%Control to 19.92%HP500 at pH 7). The stretching and unfolding of protein were modified by HP treatment, and some internal hydrophobic groups and -SH groups were exposed. HP treatment modified the secondary structure of OP. The treated samples contained less α-helix and β-sheet structures, whereas the proportions of β-sheet and random coil structures were increased. The treated samples have high digestibility in the stomach (from 26.3%Control to 39.5%HP500) and in the total digestive process (from 62.1%Control to 83.7%HP500). In addition, the total digestive production showed higher percentages of small peptides (<1 kDa) after HP treatment. The protein solubility and digestibility were increased after HP treatment, and high solubility and high digestibility might increase the chance that OP become a kind of protein supplement.


2021 ◽  
Vol 316 ◽  
pp. 187-192
Author(s):  
I.N. Egorov ◽  
S.I. Egorova ◽  
G.F. Lemeshko

Problem of obtaining fine powders of strontium hexa-ferrite is actual because of its wide applications. The paper provides the results of studies of particle size distribution and structural characteristic changes of strontium hexa-ferrite powder (SrFe12O19) during milling in impact mill and after its consequent annealing. Mechanical processing of coarse particulate system was carried out in the mill for 120 minutes without electromagnetic effect and with creation of magneto fluidized bed, formed by perpendicular constant and alternating magnetic field with induction gradient of 210 mT/m, providing reciprocating motion of particles and aggregates with sizes of 3 – 4 mm. It was shown that milling of coarse strontium hexa-ferrite with average particle size 1558.5 μm and the most possible size 1500 μm in magneto fluidized bed allowed to intensify milling process and to provide a significant increase of powder particle sizes uniformity. It was found out, that milling in magneto fluidized bed leads to a great decrease of coherent scattering regions sizes and an increase of lattice micro-deformations and relative dislocation density. Consequent annealing of the powder for 2 hours at 850°C refined structural characteristics significantly. The carried out research allows to choose the optimal milling duration for solution of practical problems of powder metallurgy.


Author(s):  
Aline Krindges ◽  
Vanusca Dalosto Jahno ◽  
Fernando Morisso

Incorporation studies of particles in different substrates with herbal assets growing. The objective of this work was the preparation and characterization of micro/nanoparticles containing cymbopogon nardus essential oil; and the incorporation of them on bacterial cellulose. For the development of the membranes was used the static culture medium and for the preparation of micro/nanoparticles was used the nanoprecipitation methodology. The incorporation of micro/nanoparticles was performed on samples of bacterial cellulose in wet and dry form. For the characterization of micro/nanoparticles were carried out analysis of SEM, zeta potential and particle size. For the verification of the incorporation of particulate matter in cellulose, analyses were conducted of SEM and FTIR. The results showed that it is possible the production and incorporation of micro/nanoparticles containing essential oil in bacterial cellulose membranes in wet form with ethanol.


Sign in / Sign up

Export Citation Format

Share Document