scholarly journals Microarray Analysis of Gene Expression Profiles of Rat Small Intestine in Response to Heat Stress

2011 ◽  
Vol 16 (6) ◽  
pp. 655-667 ◽  
Author(s):  
An Lu ◽  
Huichuan Wang ◽  
Xiaolin Hou ◽  
Huanrong Li ◽  
Guilin Cheng ◽  
...  

Ambient temperature is a critical factor that affects biological organisms in many ways. In this study, the authors investigated gene expression changes in rat small intestine in response to heat stress. Male Sprague-Dawley rats were randomly divided into control and heat-stressed groups. Both groups were housed at 25 °C, although the heat-stressed group was also subjected to 40 °C for 2 h each day for 10 successive days. Rats were sacrificed 1, 3, 6, and 10 days after heat treatment, and sections of their small intestine epithelial tissue were excised for morphological examination and microarray analyses. The rat rectal and body surface temperatures and serum cortisol levels were all significantly increased after heat treatment (p < 0.05). The jejuna were significantly damaged by 3 days after heat treatment began. Microarray analysis showed that 422 genes were differentially expressed, of which 290 genes were significantly upregulated and 132 genes were significantly downregulated. Subsequent bioinformatics analyses revealed that the differentially expressed genes were mainly related to stress, immune regulation, and metabolism processes. The bioinformatics analysis of the differentially expressed genes should be beneficial to further investigations on the underlying mechanisms involved in heat stress–induced damage in the small intestine.

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 244 ◽  
Author(s):  
Antonio Victor Campos Coelho ◽  
Rossella Gratton ◽  
João Paulo Britto de Melo ◽  
José Leandro Andrade-Santos ◽  
Rafael Lima Guimarães ◽  
...  

HIV-1 infection elicits a complex dynamic of the expression various host genes. High throughput sequencing added an expressive amount of information regarding HIV-1 infections and pathogenesis. RNA sequencing (RNA-Seq) is currently the tool of choice to investigate gene expression in a several range of experimental setting. This study aims at performing a meta-analysis of RNA-Seq expression profiles in samples of HIV-1 infected CD4+ T cells compared to uninfected cells to assess consistently differentially expressed genes in the context of HIV-1 infection. We selected two studies (22 samples: 15 experimentally infected and 7 mock-infected). We found 208 differentially expressed genes in infected cells when compared to uninfected/mock-infected cells. This result had moderate overlap when compared to previous studies of HIV-1 infection transcriptomics, but we identified 64 genes already known to interact with HIV-1 according to the HIV-1 Human Interaction Database. A gene ontology (GO) analysis revealed enrichment of several pathways involved in immune response, cell adhesion, cell migration, inflammation, apoptosis, Wnt, Notch and ERK/MAPK signaling.


2021 ◽  
Author(s):  
Li Guoquan ◽  
Du Junwei ◽  
He Qi ◽  
Fu Xinghao ◽  
Ji Feihong ◽  
...  

Abstract BackgroundHashimoto's thyroiditis (HT), also known as chronic lymphocytic thyroiditis, is a common autoimmune disease, which mainly occurs in women. The early manifestation was hyperthyroidism, however, hypothyroidism may occur if HT was not controlled for a long time. Numerous studies have shown that multiple factors, including genetic, environmental, and autoimmune factors, were involved in the pathogenesis of the disease, but the exact mechanisms were not yet clear. The aim of this study was to identify differentially expressed genes (DEGs) by comprehensive analysis and to provide specific insights into HT. MethodsTwo gene expression profiles (GSE6339, GSE138198) about HT were downloaded from the Gene Expression Omnibus (GEO) database. The DEGs were assessed between the HT and normal groups using the GEO2R. The DEGs were then sent to the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The hub genes were discovered using Cytoscape and CytoHubba. Finally, NetworkAnalyst was utilized to create the hub genes' targeted microRNAs (miRNAs). ResultsA total of 62 DEGs were discovered, including 60 up-regulated and 2 down-regulated DEGs. The signaling pathways were mainly engaged in cytokine interaction and cytotoxicity, and the DEGs were mostly enriched in immunological and inflammatory responses. IL2RA, CXCL9, IL10RA, CCL3, CCL4, CCL2, STAT1, CD4, CSF1R, and ITGAX were chosen as hub genes based on the results of the protein-protein interaction (PPI) network and CytoHubba. Five miRNAs, including mir-24-3p, mir-223-3p, mir-155-5p, mir-34a-5p, mir-26b-5p, and mir-6499-3p, were suggested as likely important miRNAs in HT. ConclusionsThese hub genes, pathways and miRNAs contribute to a better understanding of the pathophysiology of HT and offer potential treatment options for HT.


2020 ◽  
Author(s):  
Na Li ◽  
Ru-feng Bai ◽  
Chun Li ◽  
Li-hong Dang ◽  
Qiu-xiang Du ◽  
...  

Abstract Background: Muscle trauma frequently occurs in daily life. However, the molecular mechanisms of muscle healing, which partly depend on the extent of the damage, are not well understood. This study aimed to investigate gene expression profiles following mild and severe muscle contusion, and to provide more information about the molecular mechanisms underlying the repair process.Methods: A total of 33 rats were divided randomly into control (n = 3), mild contusion (n = 15), and severe contusion (n = 15) groups; the contusion groups were further divided into five subgroups (1, 3, 24, 48, and 168 h post-injury; n = 3 per subgroup). Then full genome microarray of RNA isolated from muscle tissue was performed to access the gene expression changes during healing process.Results: A total of 2,844 and 2,298 differentially expressed genes were identified in the mild and severe contusion groups, respectively. The analysis of the overlapping differentially expressed genes showed that there are common mechanisms of transcriptomic repair of mild and severe contusion within 48 h post-contusion. This was supported by the results of principal component analysis, hierarchical clustering, and weighted gene co‐expression network analysis of the 1,620 coexpressed genes in mildly and severely contused muscle. From these analyses, we discovered that the gene profiles in functional modules and temporal clusters were similar between the mild and severe contusion groups; moreover, the genes showed time-dependent patterns of expression, which allowed us to identify useful markers of wound age. We then performed an analysis of the functions of genes (including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway annotation, and protein–protein interaction network analysis) in the functional modules and temporal clusters, and the hub genes in each module–cluster pair were identified. Interestingly, we found that genes downregulated within 24−48 h of the healing process were largely associated with metabolic processes, especially oxidative phosphorylation of reduced nicotinamide adenine dinucleotide phosphate, which has been rarely reported. Conclusions: These results improve our understanding of the molecular mechanisms underlying muscle repair, and provide a basis for further studies of wound age estimation.


2017 ◽  
Vol 102 (1-2) ◽  
pp. 39-46 ◽  
Author(s):  
Woo Young Kim ◽  
Jae Bok Lee ◽  
Seung Pil Jung ◽  
Hoon Yub Kim ◽  
Sang Uk Woo ◽  
...  

The objective was to identify gene expression profile of papillary thyroid microcarcinoma. To help improve diagnosis of papillary thyroid microcarcinoma, we performed gene expression profiling and compared it to pair normal thyroid tissues. We performed microarray analysis with 6 papillary thyroid microcarcinoma and 6 pair normal thyroid tissues. Differentially expressed genes were selected using paired t test, linear models for microarray data, and significance analysis of microarrays. Real-time quantitative reverse transcription–polymerase chain reaction was used to validate the representative 10 genes (MET, TIMP1, QPCT, PROS1, LRP4, SDC4, CITED1, DPP4, LRRK2, RUNX2). We identified 91 differentially expressed genes (84 upregulated and 7 downregulated) in the gene expression profile and validated 10 genes of the profile. We identified a significant genetic difference between papillary thyroid microcarcinoma and normal tissue by 10 upregulated genes greater than 2-fold (P &lt; 0.05).


2020 ◽  
Vol 14 ◽  
pp. 117793222090616
Author(s):  
Badreddine Nouadi ◽  
Yousra Sbaoui ◽  
Mariame El Messal ◽  
Faiza Bennis ◽  
Fatima Chegdani

Nowadays, the integration of biological data is a major challenge for bioinformatics. Many studies have examined gene expression in the epithelial tissue in the intestines of infants born to term and breastfed, generating a large amount of data. The integration of these data is important to understand the biological processes involved during bacterial colonization of the newborns intestine, particularly through breast milk. This work aims to exploit the bioinformatics approaches, to provide a new representation and interpretation of the interactions between differentially expressed genes in the host intestine induced by the microbiota.


2019 ◽  
Vol 80 (04) ◽  
pp. 240-249
Author(s):  
Jiajia Wang ◽  
Jie Ma

Glioblastoma multiforme (GBM), an aggressive brain tumor, is characterized histologically by the presence of a necrotic center surrounded by so-called pseudopalisading cells. Pseudopalisading necrosis has long been used as a prognostic feature. However, the underlying molecular mechanism regulating the progression of GBMs remains unclear. We hypothesized that the gene expression profiles of individual cancers, specifically necrosis-related genes, would provide objective information that would allow for the creation of a prognostic index. Gene expression profiles of necrotic and nonnecrotic areas were obtained from the Ivy Glioblastoma Atlas Project (IVY GAP) database to explore the differentially expressed genes.A robust signature of seven genes was identified as a predictor for glioblastoma and low-grade glioma (GBM/LGG) in patients from The Cancer Genome Atlas (TCGA) cohort. This set of genes was able to stratify GBM/LGG and GBM patients into high-risk and low-risk groups in the training set as well as the validation set. The TCGA, Repository for Molecular Brain Neoplasia Data (Rembrandt), and GSE16011 databases were then used to validate the expression level of these seven genes in GBMs and LGGs. Finally, the differentially expressed genes (DEGs) in the high-risk and low-risk groups were subjected to gene ontology enrichment, Kyoto Encyclopedia of Genes and Genomes pathway, and gene set enrichment analyses, and they revealed that these DEGs were associated with immune and inflammatory responses. In conclusion, our study identified a novel seven-gene signature that may guide the prognostic prediction and development of therapeutic applications.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Xiaoming Gong ◽  
Lewis Rubin

Abstract Objectives Carotenoid/retinoids status and metabolism are essential for normal placental and fetal development. Both deficiencies and excess of retinoids and some carotenoids are associated with adverse pregnancy outcomes, such as preeclampsia and preterm birth. A group of important genes involved in regulating carotenoid/retinoid metabolism and maternal to fetal transfer in human placenta. The objective of this study is to analyze (a) the expression of genes critical for regulating carotenoid/retinoid metabolism and maternal-fetal transport in human trophoblasts and (b) placental transcriptional profiles of these pathways in response to carotenoid exposure. Methods Human cytotrophoblasts (CTBs) were isolated from term placentas. CTB RNA was used to analyze the expression of genes involved in carotenoid/retinoid metabolism and pathways by qRT-PCT. First trimester-like trophoblasts (HTR-8/SVneo) were treated with either β-carotene or lycopene. RNAs were isolated and gene expression were analyzed by DNA microarrays. Results Human CTBs express retinoid metabolism and pathways-related genes, including Stra6, Lrat, Rdh5, Rdh10, Aldh1a1, Aldh1a2, Aldh1a3, Aldh8a1, Cyp26a1, and Cyp26b1, but not carotenoid metabolism genes, BCO1 and BCO2. Microarray analysis of placental gene expression profile revealed a total of 872 and 756 differentially expressed genes, respectively, compared to the control. Gene set enrichment analysis and functional annotation clustering was performed to characterize the genes differentially expressed in either β-carotene or lycopene-treated HTR-8/SVneo cells. Many known retinoid metabolism related genes and genes involved in regulation of retinoid signaling were found, and the expression profiles of these genes were markedly different in response to β-carotene treatments. Finally, the qRT-PCR and microarray analysis results showed similar gene expression patterns of carotenoid/retinoid metabolism and pathways. Conclusions These findings suggest that placental expression of genes involved in retinoid metabolism and transport in trophoblasts is critical for regulating retinoid homeostasis during placental and fetal development. Carotenoid exposure in early placental development, significantly modify the placenta gene expression related to retinoid pathways and maternal to fetal transfer. Funding Sources NIH HD421174.


2010 ◽  
Vol 10 (3) ◽  
pp. 373-383 ◽  
Author(s):  
Kelly E. Caudle ◽  
Katherine S. Barker ◽  
Nathan P. Wiederhold ◽  
Lijing Xu ◽  
Ramin Homayouni ◽  
...  

ABSTRACTThe ABC transportersCandida glabrataCdr1 (CgCdr1), CgPdh1, and CgSnq2 are known to mediate azole resistance in the pathogenic fungusC. glabrata. Activating mutations inCgPDR1, a zinc cluster transcription factor, result in constitutive upregulation of these ABC transporter genes but to various degrees. We examined the genomewide gene expression profiles of two matched azole-susceptible and -resistantC. glabrataclinical isolate pairs. Of the differentially expressed genes identified in the gene expression profiles for these two matched pairs, there were 28 genes commonly upregulated withCgCDR1in both isolate sets includingYOR1,LCB5,RTA1,POG1,HFD1, and several members of theFLOgene family of flocculation genes. We then sequencedCgPDR1from each susceptible and resistant isolate and found two novel activating mutations that conferred increased resistance when they were expressed in a common background strain in whichCgPDR1had been disrupted. Microarray analysis comparing these reengineered strains to their respective parent strains identified a set of commonly differentially expressed genes, includingCgCDR1,YOR1, andYIM1, as well as genes uniquely regulated by specific mutations. Our results demonstrate that while CgPdr1 activates a broad repertoire of genes, specific activating mutations result in the activation of discrete subsets of this repertoire.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 5023-5023
Author(s):  
Monika Belickova ◽  
Jaroslav Cermak ◽  
Jitka Vesela ◽  
Eliska Cechova ◽  
Zuzana Zemanova ◽  
...  

Abstract Abstract 5023 A direct effects of lenalidomide on gene expression in 5q- patients was studied using HumanRef-8 v2 Expression BeadChips (Illumina). Expression profiles of 6 patients (before treatment and at the time of the first erytroid response) and 6 healthy controls were investigated from CD14+ monocytes of peripheral blood. Differentially expressed genes were identified by Significance Analysis of Microarrays (SAM). Simultaneously, selected genes (TNF, JUN, IL1) were monitored in the course of treatment using Real-Time PCR with Taqman Gene Expression Assays. A comparison of gene expression levels before and during lenalidomide treatment revealed 97 differentially expressed genes (FC >2; p<0.05) related to following biological processes: immune response (16 genes), inflammatory response (11 genes), response to bacteria (8 genes), anti-apoptosis (7 genes), regulation of MAP kinase activity (5 genes), oxygen transport (4 genes), and regulation of cell proliferation (11 genes). An overexpression of a number of cytokines (e.g. TNF, IL8, IL1B, CCL3L, CXCL2, and TNFAIP3) was detected in patients before treatment, after lenalidomide administration expression of the majority of the up-regulated cytokine genes decreased to the control baseline level. Detected overproduction of the cytokines in 5q- syndrome may lead to an increased apoptosis of hematopoietic progenitor cells and together with excessive oxidative stress may contribute to the damage the hematopoietic niche. In the same manner, untreated patients showed suppressed expression of two genes (CXCR4, CRTAP) which play an important role in the stem cell niche. After treatment, we detected increased expression of these genes. Both the observations might explain favorable effects of lenalidomide on the bone marrow stroma defect seen in 5q- syndrome. On the other hand, a substantial increase of the ARPC1B gene (an activator and a substrate of Aurora A) expression was detected after lenalidomide treatment. Since overexpression of Aurora A leads to polyploidy and chromosomal instability, ARPC1B might play a role in the disease progression observed in some patients treated with lenalidomide. To conclude, described changes in genes expression may contribute to identification of the pathways affected by lenalidomide and to the explanation of some effects of this drug that have not been fully understood yet. Supported by grants NS/9634 MZCR, UHKT2005 00023736, MSM0021620808 and COST EUGESMA Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2779-2779 ◽  
Author(s):  
Andrea Pellagatti ◽  
Moritz Gerstung ◽  
Elli Papaemmanuil ◽  
Luca Malcovati ◽  
Aristoteles Giagounidis ◽  
...  

Abstract A particular profile of gene expression can reflect an underlying molecular abnormality in malignancy. Distinct gene expression profiles and deregulated gene pathways can be driven by specific gene mutations and may shed light on the biology of the disease and lead to the identification of new therapeutic targets. We selected 143 cases from our large-scale gene expression profiling (GEP) dataset on bone marrow CD34+ cells from patients with myelodysplastic syndromes (MDS), for which matching genotyping data were obtained using next-generation sequencing of a comprehensive list of 111 genes involved in myeloid malignancies (including the spliceosomal genes SF3B1, SRSF2, U2AF1 and ZRSR2, as well as TET2, ASXL1and many other). The GEP data were then correlated with the mutational status to identify significantly differentially expressed genes associated with each of the most common gene mutations found in MDS. The expression levels of the mutated genes analyzed were generally lower in patients carrying a mutation than in patients wild-type for that gene (e.g. SF3B1, ASXL1 and TP53), with the exception of RUNX1 for which patients carrying a mutation showed higher expression levels than patients without mutation. Principal components analysis showed that the main directions of gene expression changes (principal components) tend to coincide with some of the common gene mutations, including SF3B1, SRSF2 and TP53. SF3B1 and STAG2 were the mutated genes showing the highest number of associated significantly differentially expressed genes, including ABCB7 as differentially expressed in association with SF3B1 mutation and SULT2A1 in association with STAG2 mutation. We found distinct differentially expressed genes associated with the four most common splicing gene mutations (SF3B1, SRSF2, U2AF1 and ZRSR2) in MDS, suggesting that different phenotypes associated with these mutations may be driven by different effects on gene expression and that the target gene may be different. We have also evaluated the prognostic impact of the GEP data in comparison with that of the genotype data and importantly we have found a larger contribution of gene expression data in predicting progression free survival compared to mutation-based multivariate survival models. In summary, this analysis correlating gene expression data with genotype data has revealed that the mutational status shapes the gene expression landscape. We have identified deregulated genes associated with the most common gene mutations in MDS and found that the prognostic power of gene expression data is greater than the prognostic power provided by mutation data. AP and MG contributed equally to this work. JB and PJC are co-senior authors. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document