Energy absorption and damage mechanism of UHMWPE-aluminum composite sandwich laminate under impact loading: An experimental investigation

2021 ◽  
pp. 109963622110204
Author(s):  
Hassan Mansoori ◽  
Mahnaz Zakeri ◽  
Mario Guagliano

This study investigates impact behavior and energy absorption of a Fiber Metal Laminate (FML) made of ultra-high molecular weight polyethylene (UHMWPE) fiber composite and aluminum 2024-T3 sheets. Specimens have been tested against two types of projectiles and failure modes are compared. The effect of different thicknesses of aluminum sheets and composite core on impact performance is investigated. To examine the influence of the lay-up sequence, two types of FML including 2/1 and 3/2 configurations have been tested. The results show that increasing the thickness of the composite core increases the absorption of energy as well as specific energy absorption (SEA). The highest amount of SEA is obtained for the sample with the lowest metal volume fraction. Damage patterns show that due to the flexibility of UHMWPE fibers and ductility of Al 2024-T3, the metal and the composite core have been deformed proportionally and more energy is absorbed. This mechanism is not seen in other conventional FMLs such as glass fiber metal laminate (GLARE). Compared with aluminum sheet and GLARE under the same conditions, the proposed FML has SEA more than 3 times that of aluminum and more than 2 times that of GLARE.

2021 ◽  
Vol 167 ◽  
pp. 108026
Author(s):  
Wentao He ◽  
Linfeng Wang ◽  
Huancai Liu ◽  
Changzi Wang ◽  
Lu Yao ◽  
...  

2013 ◽  
Vol 446-447 ◽  
pp. 109-112
Author(s):  
A. Othman ◽  
A.A. Arifin ◽  
S. Abdullah ◽  
A.K. Ariffin ◽  
N.A.N. Mohamed

The effect of specific absorbed energy on pultruded profile and thin-walled aluminum composite square cross-section tubes were studied via experimentally. The type of strand mat E-glass reinforced polyester resin was conducted in this study. The specimens of square pultruded and thin-walled wrapped strand mat E-glass composite were compressed under quasi-static of obliquely loadings from the top moving plat platen. For each specimen of composite tubes, triggering mechanism was applied on frontal end top of the tube to obtain the progressive failure throughout the crash event. The pultruded profile tube wall-thicknesses of 2.1 mm and thin-walled aluminum 1.9 mm thickness wrapped 3 layer woven fabric were examined, and the effects of crushing behaviors and failure modes were discussed. Results showed that the tubes energy absorption capability was affected significantly by different type of composite made in term of internal energy.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Yizhe Chen ◽  
Yichun Wang ◽  
Hui Wang

Fiber metal laminate (FML) is a kind of lightweight material with excellent mechanical properties combining advantages of metal laminates and fiber reinforced composites. It has been widely used in the aerospace and transportation fields and is especially used as structural material such as aircraft skins, wings, and tails. However, under complex service conditions, interlaminar failure in FMLs greatly reduced mechanical properties of the material, even leading to serious economic and safety disasters. The failure and destruction of important structural parts of aircraft and other manned transportation vehicles are extremely unsafe for people. Therefore, it is of great significance to summarize the interlaminar failure behavior of FMLs and find ways to avoid these defects. This review paper is a collection of various researches done by many groups, which systematically discuss the interlaminar failure behaviors and their control methods of FMLs. The application status of several common FMLs in aircraft structures was given. The common interlaminar failure modes of FMLs and the testing and evaluation methods of interlaminar properties were stated. The failure mechanisms and the corresponding control methods were analyzed. Finally, the future developments of FMLs were also discussed by the authors. Through this review article, readers can obtain new research progress about the control method, the mechanism and future development on the failure behavior of FMLs in a more efficient way.


Author(s):  
Lingyu Sun ◽  
Jian Zhang ◽  
Dingxin Leng

With the exceptional mechanical properties, carbon nanotubes (CNTs) are considered to be attractive candidate reinforcements for composite materials and to have potential applications in improving the energy absorption capability of matrix material. However, it is still difficult to reveal the micro-mechanisms of the impact energy absorption of CNT-reinforced composites by experiments, hence, the numerical investigation is helpful. In this paper, a unit cell of single-walled CNTs (SWCNTs) embedded in metal matrix is modeled by nano-scale finite element method. Under impact loads, the failure modes of a single SWCNT and the SWCNT in matrix are predicted, respectively, and several possible energy absorption mechanisms are explained and compared. The investigation shows that, the metal matrix restraints the radial expansion of the SWCNT and therefore improves its crush buckling resistance, and makes it absorb more energy before collapse. The specific energy absorption of SWCNTs-reinforce composites increases with the increasing volume fraction of SWCNTs in both matrixes, and ascends more quickly in magnesium alloy than in aluminum alloy matrix.


2017 ◽  
Vol 24 (14) ◽  
pp. 3026-3035 ◽  
Author(s):  
Masood Mohandes ◽  
Ahmad Reza Ghasemi ◽  
Mohsen Irani-Rahagi ◽  
Keivan Torabi ◽  
Fathollah Taheri-Behrooz

The free vibration of fiber–metal laminate (FML) thin circular cylindrical shells with different boundary conditions has been studied in this research. Strain–displacement relations have been obtained according to Love’s first approximation shell theory. To satisfy the governing equations of motion, a beam modal function model has been used. The effects of different FML parameters such as material properties lay-up, volume fraction of metal, fiber orientation, and axial and circumferential wavenumbers on the vibration of the shell have been studied. The frequencies of shells have been calculated for carbon/epoxy and glass/epoxy as composites and for aluminum as metal. The results demonstrate that the influences of FML lay-up and volume fraction of composite on the frequencies of the shell are remarkable.


1987 ◽  
Vol 109 (1) ◽  
pp. 72-77 ◽  
Author(s):  
D. W. Schmueser ◽  
L. E. Wickliffe

This paper presents the results of an impact testing program that was conducted to characterize the energy absorption and failure characteristics of selected composite material systems and to compare the results with aluminum and steel. Composite tube specimens were constructed using graphite/epoxy (Gr/Ep), Kevlar/epoxy (K/Ep), and glass/epoxy (Gl/Ep) prepreg tape and were autoclave cured. Vertical impact and static compression tests were performed on 56 tubes. Tests results for energy absorption varied significantly as a function of lay-up angle and material type. In general, the Gr/Ep tubes had specific energy absorption values that were greater than those for K/Ep and Gl/Ep tubes having the same ply construction. Angle-ply Gr/Ep and K/Ep tubes had specific energy absorption values that were greater than those for 1024 steel tubes. Gr/Ep and Gl/Ep angle-ply tubes exhibited brittle failure modes consisting of fiber splitting and ply delamination, whereas the K/Ep angle-ply tubes collapsed in an accordian buckling mode similar to that obtained for metal tubes.


2021 ◽  
pp. 109963622199387
Author(s):  
Subramani Anbazhagan ◽  
Periyasamy Manikandan ◽  
Gin B Chai ◽  
Sunil C Joshi

The load response, energy absorption, different damage mechanisms and failure modes of sandwich panels subjected to complete perforation by quasi-static indentation and the insights gleaned are presented in this paper. The experimental campaign was carried out on samples made of different type of facesheets: Aluminium, glass fibre-reinforced plastic and metal-composite hybrid (combined aluminium and GFRP) with two different core heights. Reliable numerical models were developed with appropriate constitutive material and damage model for facesheets and honeycomb core to complement the experimental observations. Good agreement between experimental results and numerical predictions in terms of force-displacement response and perforation damage ensure the fidelity of the developed numerical model. Effects of facesheet type, core height, energy absorbed by the constituent layers, damage evolution history are briefly discussed. It was observed that the energy absorption of sandwich panels and peak indentation force resisted by the top and bottom facesheet are strongly dependent on its metal-volume fraction, whilst unaffected with the height of the core. Recommendations for developing computationally efficient numerical models were provided.


Aerospace ◽  
2006 ◽  
Author(s):  
A. F. Avila ◽  
A. Silva Neto

A new nanocomposite is prepared by cold direct mixing. To investigate how this new nanocomposite behaves under low velocity impact loads, a set of plates with 16 layers and 65% fiber volume fraction is manufactured by vacuum assisted wet lay-up. The fibers have a plain-weave configuration, while the epoxy system is ARALDITE M/HY956. The nanoclay is an organically modified montmorillonite ceramic and it is dissolved into the epoxy system in a 1%, 2%, 5% and 10% ratio in weight with respect to the matrix. X-ray diffraction tests indicate that rather than exfoliated, these nanocomposites are mostly in intercalated form, with possible presence of immiscible nano systems at 10% concentration. The impact tests are based on the ASTM D5628-01 standard. For the 20 joules impact energy condition, the energy absorption by delamination increases close to 48%, while for larger energies, i.e. 40 and 60 joules, the average improvement into energy absorption is around 15%. Even for larger energies close to total perforation, i.e. 80 joules, the use of nanoclays leads to an average increase in energy absorption of close to 4%.


2021 ◽  
pp. 073168442098527
Author(s):  
Azadeh Fathi ◽  
Gholamhossein Liaghat ◽  
Hadi Sabouri ◽  
Mahmoud Chizari ◽  
Homayoun Hadavinia ◽  
...  

The current study investigated the influence of incorporation of graphene nanoplatelets (GNPs) on quasi-static behavior of composite and fiber metal laminate (FML) panels. The unmodified and modified composite specimens and FML panels with 2/1 configuration were fabricated using a hand lay-up method and investigated through a quasi-static punch and indentation testing. The two sets of tests were conducted with a flat-ended indenter and the loading conditions were the same for all samples, except support spans which were varied. Following experimental testing, possible damages at the punch region were closely investigated and localized and global damages were observed. The results revealed that adding 0.2 wt% GNPs improved the strength and fracture toughness of specimens by delaying the failure modes. On the contrary, GNPs made the bonding between the aluminum and composite interface to weaken.


Sign in / Sign up

Export Citation Format

Share Document