Studies on friction and wear characteristics of wire rope used in multi-layer winding hoist during inter-circle transition under dry friction

Author(s):  
Qing Zhang ◽  
Yuxing Peng ◽  
Zhencai Zhu ◽  
Wei Tang ◽  
Guoan Chen ◽  
...  

A winding hoist is a key equipment for ultra-deep mine hoisting. The inter-circle transition in the winding process of the hoisting wire rope causes vibration, impact, extrusion, wear, and other negative phenomena, which seriously affect the service life of the rope. In order to explore the effect of inter-circle transition on the friction and wear performance of wire ropes, the present study adopts the principle of equal ratio scaling to build a test rig for an inter-circle transition of wire ropes, and the evolutions of coefficient of friction and maximum friction temperature with increasing the tensioning force and rope speed under dry friction were investigated by the test rig, and the major wear mechanisms under different working conditions were investigated in combination with the wear morphologies. The results show that the coefficient of friction decreases first and then increases with an increase in the tensioning force, and decreases linearly with increasing the rope speed. The evolution of maximum temperature over time under different tensioning forces and rope speeds are all mainly divided into three stages: The rapid growth phase, the slow growth phase, and the stable phase. The influence of the rope speed on the temperature of the wire rope is greater than that of the tensioning force. Moreover, in the process of inter-circle transition, the major wear mechanism is abrasive wear. Furthermore, larger tensioning force and rope speed may cause the steel wires on the contact surface of the wire rope to break.

2016 ◽  
Vol 251 ◽  
pp. 49-54 ◽  
Author(s):  
Ernestas Šutinys ◽  
Vytautas Bučinskas ◽  
Andrius Dzedzickis

This paper is intended to reveal possibilities of defects finding in the wire ropes using dynamic properties of the tensed wire rope using specially designed test rig. The subject of the research is the tensioned wire rope with broken wires, located on surface of the rope.Fragment of steel rope (4 mm diameter and 1.35 m length) was tested experimentally in order to find mentioned defects. A measurement of vibrations of the wire fragment on this test rig was performed using contactless vibration sensors. Fragment of the rope, installed in the test rig was excited with electrodynamics vibrator, which created sinusoidal excitement indirectly, i.e. through own frame. Research of vibrations of the rope was performed in wide ranges of frequencies and desired dynamic properties of the rope fragment as a dynamic system was obtained. Finally, results of the experimental research are presented and conclusions are drawn.


2013 ◽  
Vol 423-426 ◽  
pp. 842-845 ◽  
Author(s):  
Zhi Hui Hu ◽  
Yong Hu ◽  
Ji Quan Hu

Based on the analysis of multi-layer winding arrangement characteristic of the wire rope in Lebus drum, the experimental study is carried on wear distribution of the wire rope in parallel grooved multi-layer winding. The result shows that, the wire rope is arranged regularly in each drum area in parallel grooved multi-layer winding; the wear of wire ropes in crossover zone is more serious than that of the parallel zone; in the same-layer wire rope winding in crossover zone, the wear damage during the wire rope winding in crossover zone at the end of each-layer drum is the most serious.


Author(s):  
LiQin Wang ◽  
JianWei Sun ◽  
Le Gu

The tribological performance of Polyetherimide (PEI) composites filled with different Polytetrafluoroethylene (PTFE) content was comparatively evaluated on MM-200 test rig in block-on-ring configuration under dry friction condition. The microstructures of worn surfaces, fractured surfaces and wear mechanisms of the PEI composite were examined under scanning electron microscope (SEM). The variations of elastic modulus and surface hardness with variation in composition were also investigated. The results showed that under conditions of dry friction the PTFE can lower the friction coefficient and reduce wear of the PEI composites. When filled with 10 wt. % PTFE, the composite had the lowest wear rate. For PEI filled with 5wt. % PTFE the friction coefficient was about 0.3 and remained comparatively stable with increase of the PTFE content.


Author(s):  
Anil Babu Seelam ◽  
Mohammad Saif Jawed ◽  
Sachidananda Hassan Krishanmurthy

In this research paper design and analysis of wire ropes used in elevator have been presented. The main objective of this study is to find the best practices on handling wire ropes for safety and to reduce the downtime of elevators due to wire rope failures. Design calculations have been done to calculate the apt dimensions and design is constructed on Auto Desk inventor software and the analysis have been performed using Ansys. Two configurations of the wire ropes have been studied and from this result it can be concluded that the design of wire rope is possible to relieve mechanical handling and to improve the design of wire ropes making it more durable by possible inclusion of new materials which in turn increases the efficiency and life of wire ropes without compromising safety.


2021 ◽  
Vol 18 (3) ◽  
pp. 278-284
Author(s):  
Sergio Baragetti

ABSTRACT: This paper reports the analyses carried out with the company Pedrini SpA ad unico socio, located in Carobbio degli Angeli, Bergamo (IT). Wire ropes with diamond beads, used as cutting tools in multi-wire machines for cutting blocks of stone, were considered and a failure analysis of the wire ropes was carried out. The aim of the paper is to highlight the damage mechanisms of the wire ropes to increase service life of these cutting tools. Microscope observations and the penetrating liquids method were used to analyze the damaged wire ropes. Fatigue, corrosion and contact fatigue problems were observed and the effect of the centering of the beads on the wire rope was studied.


Author(s):  
Xijun Hua ◽  
Julius Caesar Puoza ◽  
Peiyun Zhang

Ultrasonic motors are typically driven by the dry friction force between the rotor and the stator; the friction pairs’ high friction coefficient and low wear rate are two essential elements for improving the operational stability with longer service life. In this research article, high-precision microgroove arrays were manufactured on the surfaces of the stator and rotor of the TRUSM60 ultrasonic motor using laser machining. Dry friction and wear tests between the stator and the rotor were carried out with pin-on-disc using HSR-2M high-speed reciprocating friction and wear tester to determine the tribological properties of the ultrasonic motor. According to a different distribution of microgrooves on the two contact surfaces, the influence of smooth surface, single-sided texture, and double-sided texture on the friction pair's friction performance were discussed. The results show that the textured surface can substantially increase the coefficient of friction of the contact surface and reduce the rate of wear. The one-sided textured phosphor bronze surface with a microgroove width of 200μm and an area ratio of 20% had the highest coefficient of friction of 0.334 and a friction increase rate of 36.3%. Similarly, the single-sided textured Polyimide surface attained the highest friction coefficient of 0.355 and friction increase rate of 44.9% when the groove width is 150μm and the area ratio is 30%. A higher friction coefficient of the double-sided texture can be obtained through reasonable parameter configuration than the single-sided texture. The included angle of 0° between the two textured surfaces produced the highest friction coefficient of 0.368 and the wear rate of the phosphor bronze and polyimide surfaces were 2.01 × 10−4 mm3/N-m and 1.949 × 10−3 mm3/N-m, respectively. The result provides an essential benchmark for enhancing the tribological performance of ultrasonic motors and increasing the output torque.


2013 ◽  
Vol 5 (6) ◽  
pp. 629-632
Author(s):  
Ernestas Šutinys ◽  
Vytautas Bučinskas

This paper is intended to reveal possibilities to research of brokenwire on the wire ropes using dynamic properties of tensedwire rope and research properties of broken wire in piece ofwire rope when it is affixed on the wire rope in special testrig. During experimental test wire rope and broken wire on thetensed wire rope dynamic properties was estimated dependingon excitation frequency, also including affixed weight on thetensed wire rope dynamic properties. Finally, results are givenand conclusions are made. Santrauka Straipsnis skirtas mokslinių tyrimų galimybėms atskleisti. Naudojant dinamines savybes, bandyta aptikti nutrūkusias vielas ant įtempto plieninio lyno ir ant plieninio lyno gabaliuko rasti nutrūkusią vielą, kai šis lyno gabaliukas mechaniškai tvirtinamas ant plieninio lyno specialiame bandymų stende. Eksperimentinių tyrimų metų buvo išmatuotos plieninio lyno ir ant įtempto plieninio lyno nutrūkusios vielos dinaminės savybės priklausomai nuo lyno žadinimo dažnio, taip pat įvertinant įtempto plieninio lyno dinamines savybes, pritvirtinus ant jo papildomą svorį. Pateikiami tyrimų rezultatai ir išvados.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3763 ◽  
Author(s):  
Zhang ◽  
Jing ◽  
Xu ◽  
Zhan ◽  
Tan

Electromagnetic testing is the most widely used technique for the inspection of steel wire ropes. As one of the electromagnetic detecting approaches, the magnetic flux leakage (MFL) method has the best effect for the detection of broken wires. However, existing sensors based on MFL method still have some problems. (1) The size of the permanent magnet exciter is usually designed according to experience or rough calculation, and there is not enough depth analysis for its excitation performance; (2) Since the detectable angular range for a single Hall component is limited, Hall sensor arrays are often employed in the design of MFL sensors, which will increase the complexity of the subsequent signal processing due to the extensive use of Hall components; (3) Although the new magneto-resistance sensor has higher sensitivity, it is difficult to be applied in practice because of the requirement of the micron-level lift-off. To solve these problems, a sensor for the detection of broken wires of steel wire ropes based on the principle of magnetic concentration is developed. A circumferential multi-circuit permanent magnet exciter (CMPME) is employed to magnetize the wire rope to saturation. The traditional Hall sensor array is replaced by a magnetic concentrator to collect MFL. The structural parameters of the CMPME are optimized and the performance of the magnetic concentrator is analyzed by the finite element method. Finally, the effectiveness of the designed sensor is verified by wire breaking experiment. 1–5 external broken wires, handcrafted on the wire rope with a diameter of 24 mm, can be clearly identified, which shows great potential for the inspection of steel wire ropes.


Author(s):  
Aginaparru Sambasiva Rao ◽  
Ashok Kumar Singh

Present work describes the failure analysis of AISI 304 stainless steel lanyard wire rope which has failed during application in humid atmosphere. The wire rope has 7´19 construction which means that it consists of seven strands and each strand having 19 wires twisted in a helical fashion. The microstructures and properties of failed wire rope have been investigated and compared with unused wire rope. Both the periphery and fracture surface of the wire rope display the presence of corrosion debris enriched with O and Cl. The fracture surfaces of the failed and unused wire ropes display intergranular and dimples, respectively. The lanyard wire rope has been exposed in corrosive atmosphere and failed in intergranular mode due to enrichment of O and Cl along the grain boundaries.


2018 ◽  
Vol 19 (12) ◽  
pp. 658-661
Author(s):  
Sylwester Stawarz ◽  
Magdalena Stawarz ◽  
Robert Gumiński ◽  
Wojciech Kucharczyk

The article discusses the results of tribological tests of epoxy and resol composites. There was examined the surface condition of samples of composites operating in sliding nodes. It has been found that it is possible to use cheaper resole resins for sliding composites (instead of Epidian 5). Tests that have been carried out showed that increasing the PTFE content in the composite resulted in lowering both the coefficient of friction and wear. X-ray analysis results con-firmed the occurrence of the selective transfer phenomenon


Sign in / Sign up

Export Citation Format

Share Document