Additive manufacturing of polyethylene terephthalate glycol /carbon fiber composites: An experimental study from filament to printed parts

Author(s):  
Isaac Ferreira ◽  
Diogo Vale ◽  
Margarida Machado ◽  
Jorge Lino

This research focuses on the definition and application of a characterization methodology to determine the characteristics of fused deposition modeling 3D printing materials. Commercial short fiber reinforced and unreinforced polyethylene terephthalate glycol parts were tested achieving comparison terms. The presented methodology is composed of three classes: thermal analysis, mechanical testing, and material morphology. Filament was tensile tested with specially developed setup for determining the mechanical properties of raw materials. Standardized flexural and tensile samples were printed 100% dense in both materials and tested. Differential scanning calorimetry results showed that the thermal properties of both materials do not change with successive heating cycles. Thermogravimetric analysis allowed to understand the thermal stability of materials and quantify the amount of fiber in the matrix. Tensile tests indicated that the addition of fibers increases the Young’s modulus by 70.10% but there is lesser withstanding of stress by 28.21%. Flexural tests exhibited an increase in flexural modulus of 191.38% and 5.14% in flexural strength for the reinforced polyethylene terephthalate glycol, due to the presence of fiber. Microscopic analysis revealed a 12% of void spots and fiber alignment accordingly to the deposition path.

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1819 ◽  
Author(s):  
Simona-Nicoleta Mazurchevici ◽  
Andrei-Danut Mazurchevici ◽  
Dumitru Nedelcu

In order to find new ways to ensure sustainable development on a global level, it is essential to combine current top technologies, such as additive manufacturing, with the economic, ecological, and social fields. One objective of this paper refers to wire manufacture such as Arboblend V2 Nature, Arbofill Fichte, and Arboblend V2 Nature reinforced with Extrudr BDP “Pearl” (BDP—Biodegradable Plastic) in order to replace the plastic materials. After wire manufacture by extrusion, the diameter accuracy was analyzed compared with the Fiber Wood wire using SEM analyses and also EDAX—Energy Dispersive X-ray Analysis and DSC—Differential Scanning Calorimetry analyses were done in order to identify their elemental composition and the phase transitions suffered by the materials during heating. Using the samples obtained through the Fused Deposition Modeling (FDM) method, both crystalline phases and chemical composition information (XRD analysis) were identified, as well was determined the visco-elastic behavior Dynamic Mechanical Analysis (DMA), for the reinforced material and Fiber Wood. The extruded wires have allowed size for the printing equipment, around 1.75 mm with tolerance of ± 0.05 mm. The wire material diagrams, Arboblend V2 Nature reinforced with Extrudr BDP “Pearl” and Fiber Wood following the calorimetric analysis, presented peaks corresponding to material crystallization, while Arbofill Fichte revealed only the melting temperature. The storage module was almost double in case of Arboblend V2 Nature reinforced with Extrudr BDP “Pearl” compared with Fiber Wood and materials’ melting temperatures were confirmed by the analyses carried out.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2912 ◽  
Author(s):  
Mateusz Galeja ◽  
Klaudiusz Wypiór ◽  
Jan Wachowicz ◽  
Przemysław Kędzierski ◽  
Aleksander Hejna ◽  
...  

Polyoxymethylene (POM) is one of the most popular thermoplastic polymers used in the industry. Therefore, the interest in its potential applications in rapid prototyping is understandable. Nevertheless, its low dimensional stability causes the warping of 3D prints, limiting its applications. This research aimed to evaluate the effects of POM modification with ethylene-vinyl acetate (EVA) (2.5, 5.0, and 7.5 wt.%) on its processing (by melt flow index), structure (by X-ray microcomputed tomography), and properties (by static tensile tests, surface resistance, contact angle measurements, differential scanning calorimetry, and thermogravimetric analysis), as well as very rarely analyzed emissions of volatile organic compounds (VOCs) (by headspace analysis). Performed modifications decreased stiffness and strength of the material, simultaneously enhancing its ductility, which simultaneously increased the toughness even by more than 50% for 7.5 wt.% EVA loading. Such an effect was related to an improved linear flow rate resulting in a lack of defects inside the samples. The decrease of the melting temperature and the slight increase of thermal stability after the addition of EVA broadened the processing window for 3D printing. The 3D printing trials on two different printers showed that the addition of EVA copolymer increased the possibility of a successful print without defects, giving space for further development.


2021 ◽  
pp. 089270572110625
Author(s):  
Ajay Jayswal ◽  
Sabit Adanur

Polylactic acid (PLA) and thermoplastic polyurethane (TPU) were mixed in different proportions and extruded through twin-screw and single-screw extruders to obtain composite filaments to be used for 3D printing with fused deposition modeling (FDM) method. The properties of the filaments were characterized using uniaxial tensile tests, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), rheology, polarized optical microscope (POM), and scanning electron microscope (SEM). 3D printed samples from composite filaments were tested using dynamic mechanical analysis (DMA). It was found that the tensile strength and modulus of the filaments decrease while elongation at break increases with the increasing TPU content in the composite. The analysis also showed a partial miscibility of the polymer constituents in the solution of composite filaments. Finally, a flexible structure, plain weave fabric, was designed and 3D printed using the composite filaments developed which proved that the filaments are well suited for 3D printing.


2021 ◽  
Vol 11 (6) ◽  
pp. 2563
Author(s):  
Ivan Grgić ◽  
Vjekoslav Wertheimer ◽  
Mirko Karakašić ◽  
Željko Ivandić

Recent soft tissue studies have reported issues that occur during experimentation, such as the tissue slipping and rupturing during tensile loads, the lack of standard testing procedure and equipment, the necessity for existing laboratory equipment adaptation, etc. To overcome such issues and fulfil the need for the determination of the biomechanical properties of the human gracilis and the superficial third of the quadriceps tendons, 3D printed clamps with metric thread profile-based geometry were developed. The clamps’ geometry consists of a truncated pyramid pattern, which prevents the tendons from slipping and rupturing. The use of the thread application in the design of the clamp could be used in standard clamping development procedures, unlike in previously custom-made clamps. Fused deposition modeling (FDM) was used as a 3D printing technique, together with polylactic acid (PLA), which was used as a material for clamp printing. The design was confirmed and the experiments were conducted by using porcine and human tendons. The findings justify the usage of 3D printing technology for parts manufacturing in the case of tissue testing and establish independence from the existing machine clamp system, since it was possible to print clamps for each prepared specimen and thus reduce the time for experiment setup.


2021 ◽  
pp. 002199832098856
Author(s):  
Marcela Piassi Bernardo ◽  
Bruna Cristina Rodrigues da Silva ◽  
Luiz Henrique Capparelli Mattoso

Injured bone tissues can be healed with scaffolds, which could be manufactured using the fused deposition modeling (FDM) strategy. Poly(lactic acid) (PLA) is one of the most biocompatible polymers suitable for FDM, while hydroxyapatite (HA) could improve the bioactivity of scaffold due to its chemical composition. Therefore, the combination of PLA/HA can create composite filaments adequate for FDM and with high osteoconductive and osteointegration potentials. In this work, we proposed a different approache to improve the potential bioactivity of 3D printed scaffolds for bone tissue engineering by increasing the HA loading (20-30%) in the PLA composite filaments. Two routes were investigated regarding the use of solvents in the filament production. To assess the suitability of the FDM-3D printing process, and the influence of the HA content on the polymer matrix, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were performed. The HA phase content of the composite filaments agreed with the initial composite proportions. The wettability of the 3D printed scaffolds was also increased. It was shown a greener route for obtaining composite filaments that generate scaffolds with properties similar to those obtained by the solvent casting, with high HA content and great potential to be used as a bone graft.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3234
Author(s):  
Wangwang Yu ◽  
Lili Dong ◽  
Wen Lei ◽  
Yuhan Zhou ◽  
Yongzhe Pu ◽  
...  

To develop a new kind of environment-friendly composite filament for fused deposition modeling (FDM) 3D printing, rice straw powder (RSP)/poly(lactic acid) (PLA) biocomposites were FDM-3D-printed, and the effects of the particle size and pretreatment of RSP on the properties of RSP/PLA biocomposites were investigated. The results indicated that the 120-mesh RSP/PLA biocomposites (named 120#RSP/PLA) showed better performance than RSP/PLA biocomposites prepared with other RSP sizes. Infrared results showed that pretreatment of RSP by different methods was successful, and scanning electron microscopy indicated that composites prepared after pretreatment exhibited good interfacial compatibility due to a preferable binding force between fiber and matrix. When RSP was synergistically pretreated by alkaline and ultrasound, the composite exhibited a high tensile strength, tensile modulus, flexural strength, and flexural modulus of 58.59, 568.68, 90.32, and 3218.12 MPa, respectively, reflecting an increase of 31.19%, 16.48%, 18.75%, and 25.27%, respectively, compared with unmodified 120#RSP/PLA. Pretreatment of RSP also improved the thermal stability and hydrophobic properties, while reducing the water absorption of 120#RSP/PLA. This work is believed to provide highlights of the development of cost-effective biocomposite filaments and improvement of the properties of FDM parts.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 887 ◽  
Author(s):  
Agnieszka Haryńska ◽  
Justyna Kucinska-Lipka ◽  
Agnieszka Sulowska ◽  
Iga Gubanska ◽  
Marcin Kostrzewa ◽  
...  

The widespread use of three-dimensional (3D) printing technologies in medicine has contributed to the increased demand for 3D printing materials. In addition, new printing materials that are appearing in the industry do not provide a detailed material characterization. In this paper, we present the synthesis and characterization of polycaprolactone (PCL) based medical-grade thermoplastic polyurethanes, which are suitable for forming in a filament that is dedicated to Fused Deposition Modeling 3D (FDM 3D)printers. For this purpose, we synthesized polyurethane that is based on PCL and 1,6-hexamethylene diisocyanate (HDI) with a different isocyanate index NCO:OH (0.9:1, 1.1:1). Particular characteristics of synthesized materials included, structural properties (FTIR, Raman), thermal (differential scanning calorimetry (DSC), thermogravimetric analysis (TGA)), mechanical and surfaces (contact angle) properties. Moreover, pre-biological tests in vitro and degradation studies were also performed. On the basis of the conducted tests, a material with more desirable properties S-TPU(PCL)0.9 was selected and the optimization of filament forming via melt-extrusion process was described. The initial biological test showed the biocompatibility of synthesized S-TPU(PCL)0.9 with respect to C2C12 cells. It was noticed that the process of thermoplastic polyurethanes (TPU) filaments forming by extrusion was significantly influenced by the appropriate ratio between the temperature profile, rotation speed, and dosage ratio.


Author(s):  
Karolina E. Mazur ◽  
Aleksandra Borucka ◽  
Paulina Kaczor ◽  
Szymon Gądek ◽  
Rafał Bogucki ◽  
...  

AbstractIn the study, polylactide-based (PLA) composites modified with natural particles (wood, bamboo, and cork) and with different levels of infilling (100%, 80%, and 60%) obtained by fused deposition modeling were tested. The effect of fiber type, infill level and crystallization rate on the mechanical properties were investigated by using tensile, flexural, and impact tests. The materials were subjected to mechanical tests carried out at 23 and 80 °C. Differential scanning calorimetry were employed to analyze crystallization behavior of composite. Furthermore, hydrothermal degradation was performed, and its effect on the properties was analyzed. The addition of natural fillers and different levels of infilling result in a similar level of reduction in the properties. However, the addition of natural fillers resulted in a slightly lower drop than the lowered infilling rate − 40% and 50% for tensile strength, respectively. Moreover, it was found that, composites made of PLA are more sensitive to high temperatures than to water. The decrease in Young's modulus of PLA at 80 °C was 90%, while after 28 days of hydrodegradation ~ 9%. The addition of fibers reduced this decrease at elevated temperatures. Importantly, in the case of a brittle material such as PLA, the impact strength has been improved by 50% for composites with cork particles and other lignocellulosic composites remained at the same level as for resin. Generally, the thermal treatment of composites increased the degree of crystallinity of the materials, as reflected in the higher results of mechanical tests.


2021 ◽  
Vol 68 (1 Jan-Feb) ◽  
Author(s):  
Alfredo Márquez-Herrera ◽  
Joel Moreno-Palmerin

The ASTM A-36 steel is the main alloy, used in the metal-mechanical industry. In the present study, the effect of boron-carbon coating on the hardness and corrosion resistance of the steel ASTM A-36 was reported. Boronizing thermochemical treatment was carried out at 950 °C for 4 h followed by the carburizing process at 930 °C for 6 h. The corrosion study was conducted using the polarization technique (Tafel) and electrochemical impedance spectroscopy (EIS), which employed a fused deposition modeling-based 3D printing electrochemical cell made of polylactic acid (PLA). A commercial platinum foil and an Ag/AgCl (3.5 M KCl) electrode were used as the counter and reference electrode, respectively. The working electrode used an area of 1 cm2 of the sample. Optical microscopic analysis shown that borides formed on the surface of steels has a saw-tooth morphology and a uniform coating with a thickness of about 60 µm in both samples. The carburizing over boride promoted the formation of coatings on the outermost layer of the samples with a thickness of about 17 µm over the boride layer. Boride formation was verified by X-ray diffraction (XRD) analysis indicating only the formation of the Fe2B phase. Results showed that boride samples exhibited inferior corrosion resistance compared to original samples, but after carburizing, an outer layer was formed, with the hardness and corrosion resistance like that of the original sample.


Author(s):  
J.M. Vazquez-Martinez ◽  
D. Piñero ◽  
J. Salguero ◽  
M. Batista

The development of high complexity geometry parts is one of the main goals of the additive manufacturing technology. However, the failure of printed structures and the joining of different parts to create complex assemblies represents a real challenge in the research of efficient and sustainability techniques for the permanent assembly of polymers. Laser welding processes have been used as a single step method to join metals until years ago. Nowadays, the growing trend in the use of thermoplastics for additive manufacturing has led to the need to adapt this technique to materials with a very specific nature and more sensitive to thermal effects. Also, the possibility of transmitting the laser beam through transparent polymer layers allows to focus the energy supply on internal sections of the assembled components. In this research, an infrared laser marking system was used to join two different samples of polylactic acid manufactured by fused deposited modeling technology. In order to increase the effectiveness of the bonding process, a transparent and a dark sample have been used as assembly material, focusing the laser beam on the interface area of the two parts. By means of tensile tests, dimensional measurement and the use of optical microscopy techniques, a basis was established that links the supplied energy by laser to the joining performance.


Sign in / Sign up

Export Citation Format

Share Document