Effect of Model Pollutants on the Recycling of PE/PS Plastic Blends

2003 ◽  
Vol 19 (2) ◽  
pp. 61-76 ◽  
Author(s):  
Tasnim Kallel ◽  
Valérie Massardier-Nageotte ◽  
Mohamed Jaziri ◽  
Jean-François Gérard ◽  
Boubaker Elleuch

PE/PS blends have been extensively studied with the objective of improving their recycling. The objective of the present study was to investigate the effect of potential pollutants on properties of high density polyethylene (HDPE)/polystyrene (PS) plastic blends. The pollutants selected were a polar molecule of low molar mass, i.e. ethylene glycol, and an oil for engine which can be considered as less polar higher molar mass molecules. Such study can be considered for the recycling of polymer wastes from automotive applications. The compatibilizer used for PE/PS blends was a non-grafted Styrene-Ethylene Butene-Styrene copolymer (SEBS). Rheological properties, morphology and mechanical properties were analyzed. Study of the morphologies and of the mechanical properties shows that a small polar molecule such as ethylene glycol can form a third phase whereas an oil can improve compatibilization (lower diameter of the dispersed phase, better adhesion). Morphologies are in good agreement with mechanical behavior. For PE/PS blends, the lower adhesion due to the presence of ethylene glycol induced a decrease of the viscosity and absorbed energy. On the opposite, the presence of oil decreases the diameter of the dispersed phase, which leads to a significant improvement of the impact properties.

2011 ◽  
Vol 19 (9) ◽  
pp. 725-732
Author(s):  
Shigeki Hikasa ◽  
Kazuya Nagata ◽  
Yoshinobu Nakamura

The influences of combined elastomers on impact properties and morphology of polypropylene (PP)/elastomer/CaCO3 ternary composites were investigated. In the case that polystyrene- block-poly(ethylene-butene)- block-polystyrene triblock copolymer (SEBS) and poly(ethylene- co-octene) (EOR) were used as elastomers, a sea-island structure consisting of EOR dispersed phase and SEBS continuous phase was formed. The elastomer and the CaCO3 particles were separately dispersed in PP matrix. In the case that carboxylated SEBS (C-SEBS) and EOR were used, the C-SEBS particles were dispersed in the EOR particles. Almost all of the CaCO3 particles were dispersed in the PP matrix, although some of the CaCO3 particles were dispersed in the C-SEBS/EOR combined particles. Impact strength improved with an increase of incorporated CaCO3 particles. The effect of elastomer on the impact strength was SEBS ≥ SEBS/EOR > EOR = C-SEBS/EOR > C-SEBS. The morphology formed by elastomer and CaCO3 particles strongly affected the impact properties of the ternary composites.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7450
Author(s):  
Gokcen A. Ciftcioglu ◽  
Curtis W. Frank

Understanding the impact of different bridging groups in the two-step polymerization of poly(ethylene glycol) (PEG)-incorporated polyimide (PI) materials is significant. It is known that the proton exchange membranes (PEMs) used in industry today can experience performance degradation under rising temperature conditions. Many efforts have been devoted to overcoming this problem by improving the physical and mechanical properties that extend the hygrothermal life of a PEM. This work examines the effect of oxygenated and fluorinated bridging anhydrides in the production of PI-PEG PEMs. It is shown that the dianhydride identity and the amount incorporated in the synthesis influences the properties of the segmented block copolymer (SBC) membranes, such as increased ionic liquid uptake (ILU), enhanced conductivity and higher Young’s modulus favoring stiffness comparable to Nafion 115, an industrial standard. Investigations on the ionic conductivity of PI-PEG membranes were carried out to determine how thermal annealing would affect the material’s performance as an ion-exchange membrane. By applying a thermal annealing process at 60 °C for one hour, the conductivities of synthesized segmented block copolymer membranes values were increased. The effect of thermal annealing on the mechanical properties was also shown for the undoped SBC via measuring the change in the Young’s modulus. These higher ILU abilities and mechanical behavior changes are thought to arise from the interaction between PEG molecules and ethylammonium nitrate (EAN) ionic liquid (IL). In addition, higher interconnected routes provide a better ion-transfer environment within the membrane. It was found that the conductivity was increased by a factor of ten for undoped and a factor of two to seven for IL-doped membranes after thermal annealing.


2018 ◽  
Vol 69 (10) ◽  
pp. 2737-2739
Author(s):  
Carmen Otilia Rusanescu ◽  
Marin Rusanescu

This aim of this is to determine the manner of realizing tubing pipe, which have to comply with suplimentary requirements concerning the notch impact strength at lower temperature (below - 300C). We realized �73 x 5.51 mm and �89 x 13 mm pipes applying various final heat treatment variants. For each heat treatment variant were determined the mechanical properties and the impact absorbed energy at temperatures between (-60 0C and +15 0C).


2007 ◽  
Vol 124-126 ◽  
pp. 1413-1416
Author(s):  
Sung Ho Kim ◽  
Chang Hee Han ◽  
Woo Seog Ryu

The effects of thermal aging on microstructural evolution and mechanical properties are important in the understanding of the in-service behavior of ferritic/martensitic steels in advanced nuclear power system. Ferritic/martensitic steels have been aged at 600oC for times up to 20,000 hrs. The change of mechanical properties has been examined for these aged materials. The strength and hardness was hardly changed after the thermal aging at 600oC for 20,000 hrs in all specimens. The impact absorbed energy decreased with the aging time. But the decrease of the impact absorbed energy was larger at the early stage of aging in tungsten added steels. This is attributed to the formation of Laves phase. Nitrogen which is known to increase the creep rupture strength had no effect on the degradation of the microstructure and mechanical properties during thermal aging.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


2008 ◽  
Vol 36 (3) ◽  
pp. 211-226 ◽  
Author(s):  
F. Liu ◽  
M. P. F. Sutcliffe ◽  
W. R. Graham

Abstract In an effort to understand the dynamic hub forces on road vehicles, an advanced free-rolling tire-model is being developed in which the tread blocks and tire belt are modeled separately. This paper presents the interim results for the tread block modeling. The finite element code ABAQUS/Explicit is used to predict the contact forces on the tread blocks based on a linear viscoelastic material model. Special attention is paid to investigating the forces on the tread blocks during the impact and release motions. A pressure and slip-rate-dependent frictional law is applied in the analysis. A simplified numerical model is also proposed where the tread blocks are discretized into linear viscoelastic spring elements. The results from both models are validated via experiments in a high-speed rolling test rig and found to be in good agreement.


2017 ◽  
Vol 2 (4) ◽  
pp. 25
Author(s):  
L. A. Montoya ◽  
E. E. Rodríguez ◽  
H. J. Zúñiga ◽  
I. Mejía

Rotating systems components such as rotors, have dynamic characteristics that are of great importance to understand because they may cause failure of turbomachinery. Therefore, it is required to study a dynamic model to predict some vibration characteristics, in this case, the natural frequencies and mode shapes (both of free vibration) of a centrifugal compressor shaft. The peculiarity of the dynamic model proposed is that using frequency and displacements values obtained experimentally, it is possible to calculate the mass and stiffness distribution of the shaft, and then use these values to estimate the theoretical modal parameters. The natural frequencies and mode shapes of the shaft were obtained with experimental modal analysis by using the impact test. The results predicted by the model are in good agreement with the experimental test. The model is also flexible with other geometries and has a great time and computing performance, which can be evaluated with respect to other commercial software in the future.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xichuan Liu ◽  
Taichang Gao ◽  
Yuntao Hu ◽  
Xiaojian Shu

In order to improve the measurement of precipitation microphysical characteristics sensor (PMCS), the sampling process of raindrops by PMCS based on a particle-by-particle Monte-Carlo model was simulated to discuss the effect of different bin sizes on DSD measurement, and the optimum sampling bin sizes for PMCS were proposed based on the simulation results. The simulation results of five sampling schemes of bin sizes in four rain-rate categories show that the raw capture DSD has a significant fluctuation variation influenced by the capture probability, whereas the appropriate sampling bin size and width can reduce the impact of variation of raindrop number on DSD shape. A field measurement of a PMCS, an OTT PARSIVEL disdrometer, and a tipping bucket rain Gauge shows that the rain-rate and rainfall accumulations have good consistencies between PMCS, OTT, and Gauge; the DSD obtained by PMCS and OTT has a good agreement; the probability of N0, μ, and Λ shows that there is a good agreement between the Gamma parameters of PMCS and OTT; the fitted μ-Λ and Z-R relationship measured by PMCS is close to that measured by OTT, which validates the performance of PMCS on rain-rate, rainfall accumulation, and DSD related parameters.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 830
Author(s):  
Julio Cesar Martinez-Garcia ◽  
Alexandre Serraïma-Ferrer ◽  
Aitor Lopeandía-Fernández ◽  
Marco Lattuada ◽  
Janak Sapkota ◽  
...  

In this work, the effective mechanical reinforcement of polymeric nanocomposites containing spherical particle fillers is predicted based on a generalized analytical three-phase-series-parallel model, considering the concepts of percolation and the interfacial glassy region. While the concept of percolation is solely taken as a contribution of the filler-network, we herein show that the glassy interphase between filler and matrix, which is often in the nanometers range, is also to be considered while interpreting enhanced mechanical properties of particulate filled polymeric nanocomposites. To demonstrate the relevance of the proposed generalized equation, we have fitted several experimental results which show a good agreement with theoretical predictions. Thus, the approach presented here can be valuable to elucidate new possible conceptual routes for the creation of new materials with fundamental technological applications and can open a new research avenue for future studies.


Sign in / Sign up

Export Citation Format

Share Document