Experimental study on uniaxial tensile and welding performance of a new coated fabric for airship envelopes

2016 ◽  
Vol 46 (7) ◽  
pp. 1474-1497 ◽  
Author(s):  
Fengxin Wang ◽  
Yonglin Chen ◽  
Wen Xu ◽  
Zhensen Song ◽  
Gongyi Fu

This paper investigated the mechanical properties of GQ-6 subjected to a tremendous amount of uniaxial tests. Such material is a new kind of ultra high molecular weight polyethylene fiber and aimed to be adopted in stratospheric airship. To begin with, mono-uniaxial tensile tests were conducted. The cycling-uniaxial tensile experiments were then carried out on the basis of the mono-uniaxial tensile tests data. Finally, performances of welding seams were thoroughly investigated with forty welding specimens. Results of mono-uniaxial tensile tests revealed that such woven fabric possesses high tensile strength and low elongation ratio at break. Meanwhile, the stress–strain behaviors were fitted by the Ogden model and a good agreement between such model and experimental data was obtained. Influences of the uniaxial loading cycle on such woven stiffness were discussed and the elastic moduli were defined with a standard hysteresis loop. For the welding tests, four types of overlapping welding failures were discovered. Compared with intact specimens, an appropriate welding width of 60 mm and an approximate 15% discount of the ultimate tensile stress on the intact textile were obtained.

2012 ◽  
Vol 504-506 ◽  
pp. 213-218 ◽  
Author(s):  
Walid Najjar ◽  
Xavier Legrand ◽  
Cedric Pupin ◽  
Philippe Dal Santo ◽  
Serge Boude

In this paper, a discrete approach for the simulation of the preforming of dry woven reinforcement is proposed. A “unit cell” is built using elastic isotropic shells and axial connectors instead of bars and beams used in previous studies. Shell elements are used to take into account the in-plane shear stiffness and to manage contact phenomenon with the punch and die. Connectors reinforce the structure in the yarn directions and naturally capture the specific behavior of the fabric. To identify the material parameters, uniaxial tensile tests and bias tests have been employed. A numerical algorithm, coupling Matlab and Abaqus/Explicit, is used to determine the shear parameters by an inverse method. The model has been implemented in Abaqus to simulate hemispherical stamping. Experimental results are compared to numerical simulations, good agreement between both results is shown.


2016 ◽  
Vol 36 (4) ◽  
pp. 254-270 ◽  
Author(s):  
Andrzej Ambroziak ◽  
Paweł Kłosowski

The purpose of the paper is the estimation of the polyvinyl chloride – polyester-coated fabric (Precontraint 1202 S2) mechanical properties under uniaxial tensile tests as well as short- and long-time creep tests. The uniaxial tests are the basis of non-linear elastic description while the creep tests are used for the evaluation of the stiffness parameters in time and for the identification of the standard viscoelastic model. The paper also includes a short survey of literature concerning the coated woven fabric description.


2019 ◽  
Vol 17 (1) ◽  
pp. 228080001982782
Author(s):  
Cesare Signorini ◽  
Antonella Sola ◽  
Andrea Nobili ◽  
Cristina Siligardi

Background: Lack of interphase compatibility between the fabric and the matrix significantly impairs the load-bearing capacity of textile reinforced mortar (TRM). In this study, we consider the application of two inorganic surface coatings for enhancing the interphase bond properties. Methods: Either of two silica-based coatings, namely nano- and micro-silica, were applied to alkali-resistant glass (ARG) and to hybrid carbon–ARG woven fabric. Mechanical performance of TRM reinforced with the uncoated and the coated fabric was compared in uniaxial tensile tests. Results: Mechanical testing provides evidence of a remarkable enhancement in terms of ultimate strength and deformability for the coated specimens. This effect can be ascribed to the improved hydrophilicity of the fibers’ surface and to the activation of pozzolanic reaction at the interphase. In addition, penetration of nano- and microparticles in the bundle of the textile yarns reduces the occurrence of telescopic failure.


2015 ◽  
Vol 732 ◽  
pp. 161-164 ◽  
Author(s):  
Jan Vesely ◽  
Lukas Horny ◽  
Hynek Chlup ◽  
Milos Beran ◽  
Milan Krajicek ◽  
...  

The effects of the polyvinyl alcohol (PVA) concentration on mechanical properties of hydrogels based on blends of native or denatured collagen / PVA were examined. Blends of PVA with collagen were obtained by mixing the solutions in different ratios, using glycerol as a plasticizer. The solutions were cast on polystyrene plates and the solvent was allowed to evaporate at room temperature. Uniaxial tensile tests were performed in order to obtain the initial modulus of elasticity (up to deformation 0.1), the ultimate tensile stress and the deformation at failure of the material in the water-saturated hydrogel form. It was found that the material was elastic and the addition of PVA helped to enhance both the ultimate tensile stress and modulus of elasticity of the films. Samples prepared from denaturated collagen showed the higher ultimate tensile stress and the deformation at failure in comparison with those prepared from native collagen. The results suggest that we could expect successful application of the collagen/PVA biomaterial for tissue engineering.


2015 ◽  
Vol 35 (4) ◽  
pp. 377-390 ◽  
Author(s):  
Andrzej Ambroziak

Abstract This article describes the laboratory tests necessary to identify the mechanical properties of the polyvinylidene fluoride (PVDF)-coated fabrics named Precontraint 1202S and Precontraint 1302S. First, a short survey of the literature concerning the description of coated woven fabrics is presented. Second, the material parameters for PVDF-coated fabrics are specified on the basis of biaxial tensile tests. A comparison of the 1:1 biaxial and the uniaxial tensile tests results is also given. Additionally, biaxial cyclic tests were performed to observe the change of immediate mechanical properties under cyclic load. The article is aimed as an introduction to a comprehensive investigation of the mechanical properties of coated fabrics.


2000 ◽  
Vol 653 ◽  
Author(s):  
Mikael Nygårds ◽  
Dilip Chandrasekaran ◽  
Peter Gudmundson

AbstractA two-dimensional micromechanical model based on the finite element method is presented to model two-phase ferritic/pearlitic steels, by aid of generalised plane strain elements. A periodic representative cell containing 100 ferrite grains, and the desired fraction pearlite is used. By applying periodic boundary conditions, loading by an average stress or strain state is possible.Uniaxial tensile tests were performed on specimens containing the ferrite and pearlite microstructures, and on two-phase materials containing 25% and 58% pearlite respectively. The stress-strain data of the pearlite material is used to fit a laminar dependent Taylor relation to represent the pearlite workhardening. Thereafter, laminar spacings in the two-phase materials are measured, and the total stress-strain response of the materials is modelled. Comparisons between generated data and experiments show good agreement up to a strain of 2%.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 1
Author(s):  
Andrzej Ambroziak ◽  
Paweł Kłosowski

The impact of water-induced degradation on the mechanical properties of the chosen two PTFE-coated, glass threads woven fabrics is investigated in this paper. The paper begins with a survey of literature concerning the investigation and determination of coated woven fabric properties. The authors carried out the uniaxial tensile tests with an application of flat and curved grips to establish the proper values of the ultimate tensile strength and the longitudinal stiffness of groups of specimens treated with different moisture conditions. Despite the water resistance of the main materials used for fabrics manufacturing, the change of the mechanical properties caused by the influence of water immersion has been noticed. The reduction in the tensile strength resulting under waterlogged is observed in the range from 5% to 16% depending on the type of investigated coated woven fabric and direction of weft or warp.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1779
Author(s):  
A. D. Drozdov ◽  
J. deClaville Christiansen

Observations are reported on poly(ether ether ketone) (PEEK) in uniaxial tensile tests, relaxation tests and creep tests with various stresses in a wide interval of temperatures ranging from room temperature to 180 °C. Constitutive equations are developed for the thermo–mechanical behavior of PEEK under uniaxial deformation. Adjustable parameters in the governing equations are found by matching the experimental data. Good agreement is demonstrated between the observations and results of numerical simulation. It is shown that the activation energies for the elastoplastic, viscoelastic and viscoelastoplastic responses adopt similar values at temperatures above the glass transition point.


1997 ◽  
Vol 67 (6) ◽  
pp. 445-459 ◽  
Author(s):  
M. L. Realff ◽  
M. C. Boyce ◽  
S. Backer

This work takes a micromechanical approach to fabric tensile modeling. The entire uniaxial tensile stress-strain behavior of the fabric is modeled from the constitutive yarn properties (tensile, bending, flattening, and consolidation behavior) and the original fabric geometry. Techniques for measuring these yarn properties are described. In most cases, there is good agreement between the theoretical and experimental results for several fabrics of differing weave and yarn construction. Modified approaches are suggested for those cases where prediction of fabric stress-strain behavior deviates from the experimental data.


2018 ◽  
Vol 11 (2) ◽  
pp. 84-103
Author(s):  
Gyula Szabó ◽  
Károly Váradi

The aim of this article is to model mechanical behavior of a filament-wound, rubber-based composite tube subjected to uniaxial tension at low temperature by test experiments and FE simulations. Uniaxial tensile tests at sub-zero temperature (-40 °C) have been carried out on standard test specimens and on hose pieces. furthermore, a uniaxial tensile test has been performed on a hose piece at room temperature as a reference experiment. Reinforcement layers of the composite tube are modeled as transversely isotropic, whereas elastomer liners are described by 2 parameter Mooney-Rivlin hyperelastic material model. Temperature-dependence of elastic constants of composite layers is attributed to the temperature-dependence of rubber, so uniaxial tensile tests on standard test specimens needed to be carried out for determining material properties of rubber at sub-zero temperature (-40°C). Force-displacement results of FE models and experiments of standard test specimen and hose piece show good agreement. Likewise, force-displacement curves of reference experiment (carried out at room temperature) and its related FE simulation are in good agreement with each other. Slope of force-displacement curves of hose piece at -40 °C is nearly 3.4 times the slope of force-displacement curves of hose piece at room temperature.


Sign in / Sign up

Export Citation Format

Share Document