Mapping the Domain of Electronic Repair Shops: A Field Study in Fault Diagnosis

Author(s):  
Dal Vernon C. Reising ◽  
Penelope M. Sanderson

Recent experimental research has indicated that different multiple faults impose differing levels of objective and subjective difficulty on human troubleshooters. Technological advances suggest that systems are becoming more complex and integrated, in which case multiple components will fail. Operators will have to be able to deal with these more complex failures. In this paper we report field work conducted in order to build and substantiate a model of the factors influencing fault diagnosis in the field. By conducting field observations and by constructing concept maps, we investigated how expert troubleshooters handle the difficulty associated with diagnosing multiple faults. The troubleshooters were expert electronic technicians in departmental repair shops on a large university campus. The end product of the research is a model of fault diagnosis that is grounded in field data. Our results suggest that diagnostic difficulty arises from several factors: (1) organizational structure, (2) technicians' strategies for fault diagnosis, and (3) equipment design. The field observations and concept maps indicate that technicians approach the diagnostic task with standard, ritualistic methods that they have developed over years of experience. They generally go through two phases of troubleshooting: (1) the problem definition phase and (2) what we call the At-the-Equipment-TroubleShooting (AETS) phase. Technicians also reason about multiple failures in series, considering one simple explanation at a time. Our principal conclusion is that in real-world settings the three previously mentioned factors have evolved to avoid situations in which technicians must engage in prolonged functional reasoning. These findings will be used (1) to develop further the model of fault diagnosis, and (2) to guide future experimental investigations studying the influences of fault diagnosis.

Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1161
Author(s):  
Kuo-Hao Fanchiang ◽  
Yen-Chih Huang ◽  
Cheng-Chien Kuo

The safety of electric power networks depends on the health of the transformer. However, once a variety of transformer failure occurs, it will not only reduce the reliability of the power system but also cause major accidents and huge economic losses. Until now, many diagnosis methods have been proposed to monitor the operation of the transformer. Most of these methods cannot be detected and diagnosed online and are prone to noise interference and high maintenance cost that will cause obstacles to the real-time monitoring system of the transformer. This paper presents a full-time online fault monitoring system for cast-resin transformer and proposes an overheating fault diagnosis method based on infrared thermography (IRT) images. First, the normal and fault IRT images of the cast-resin transformer are collected by the proposed thermal camera monitoring system. Next is the model training for the Wasserstein Autoencoder Reconstruction (WAR) model and the Differential Image Classification (DIC) model. The differential image can be acquired by the calculation of pixel-wise absolute difference between real images and regenerated images. Finally, in the test phase, the well-trained WAR and DIC models are connected in series to form a module for fault diagnosis. Compared with the existing deep learning algorithms, the experimental results demonstrate the great advantages of the proposed model, which can obtain the comprehensive performance with lightweight, small storage size, rapid inference time and adequate diagnostic accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4424
Author(s):  
Udeme Inyang ◽  
Ivan Petrunin ◽  
Ian Jennions

Bearings are critical components found in most rotating machinery; their health condition is of immense importance to many industries. The varied conditions and environments in which bearings operate make them prone to single and multiple faults. Widespread interest in the improvements of single fault diagnosis meant limited attention was spent on multiple fault diagnosis. However, multiple fault diagnosis poses extra challenges due to the submergence of the weak fault by the strong fault, presence of non-Gaussian noise, coupling of the frequency components, etc. A number of existing convolutional neural network models operate on a distinct feature that is not enough to assure reliable results in the presence of these challenges. In this paper, extended feature sets in three homogenous deep learning models are used for multiple fault diagnosis. This ensures a measure of diversity is introduced to the health management dataset to obtain complementary solutions from the models. The outputs of the models are fused through blending ensemble learning. Experiments using vibration datasets based on bearing multiple faults show an accuracy of 98.54%, with an improvement of 2.74% in the overall effectiveness over the single models. Compared with other technologies, the results show that this approach provides an improved generalized diagnostic capability.


2010 ◽  
Vol 14 (2) ◽  
pp. 369-382 ◽  
Author(s):  
M. G. Kleinhans ◽  
M. F. P. Bierkens ◽  
M. van der Perk

Abstract. From an outsider's perspective, hydrology combines field work with modelling, but mostly ignores the potential for gaining understanding and conceiving new hypotheses from controlled laboratory experiments. Sivapalan (2009) pleaded for a question- and hypothesis-driven hydrology where data analysis and top-down modelling approaches lead to general explanations and understanding of general trends and patterns. We discuss why and how such understanding is gained very effectively from controlled experimentation in comparison to field work and modelling. We argue that many major issues in hydrology are open to experimental investigations. Though experiments may have scale problems, these are of similar gravity as the well-known problems of fieldwork and modelling and have not impeded spectacular progress through experimentation in other geosciences.


Author(s):  
Antoni Ligęza ◽  
Jan Kościelny

A New Approach to Multiple Fault Diagnosis: A Combination of Diagnostic Matrices, Graphs, Algebraic and Rule-Based Models. The Case of Two-Layer ModelsThe diagnosis of multiple faults is significantly more difficult than singular fault diagnosis. However, in realistic industrial systems the possibility of simultaneous occurrence of multiple faults must be taken into account. This paper investigates some of the limitations of the diagnostic model based on the simple binary diagnostic matrix in the case of multiple faults. Several possible interpretations of the diagnostic matrix with rule-based systems are provided and analyzed. A proposal of an extension of the basic, single-level model based on diagnostic matrices to a two-level one, founded on causal analysis and incorporating an OR and an AND matrix is put forward. An approach to the diagnosis of multiple faults based on inconsistency analysis is outlined, and a refinement procedure using a qualitative model of dependencies among system variables is sketched out.


The implementation of neural network for the fault diagnosis is to improve the dependability of the proposed scheme by providing a more accurate, faster diagnosis relaying scheme as compared with the conventional relaying schemes. It is important to improve the relaying schemes regarding the shortcoming of the system and increase the dependability of the system by using the proposed relaying scheme. It also provide more accurate, faster relaying scheme. It also gives selective schemes as compared to conventional system. The techniques for survey employed some methods for the collection of data which involved a literature review of journals, from review on books, newspaper, magazines as well as field work, additional data was collected from researchers who are working in this field. To achieve optimum result we have to improve following things: (i) Training time, (ii) Selection of training vector, (iii) Upgrading of trained neural nets and integration of technologies. AI with its promise of adaptive training and generalization deserves scope. As a result we obtain a system which is more reliable, more accurate, and faster, has more dependability as well as it will selective according to the proposed relaying scheme as compare to the conventional relaying scheme. This system helps us to reduce the shortcoming like major faults which we faced in the complex system of transmission lines which will helps in reducing human effort, saves cost for maintaining the transmission system.


2014 ◽  
Vol 936 ◽  
pp. 2243-2246 ◽  
Author(s):  
Zhu Ting Yao ◽  
Hong Xia Pan

Engine is as a power machine, the operating status is good or bad, directly affects the working status of equipment. The status monitoring and fault diagnosis is very necessary to ensure that the equipment runs in its best, and improves equipment maintenance quality and efficiency. The engine failure shows the complexity and diversity of the interaction and complex relationship between the various subsystems of the engine, that is the fault of complexity, ambiguity, correlation, relativity and multiple faults coexistence. The available information are much in the engine diagnosis, for example, the vibration signal from bearings, cylinder head or cylinder block surface; oil, cooling water, pressure of intake, exhaust and fuel; temperature signal; noise, speed or oil-sample signals. In this paper, an engine as an example, engine fault diagnosis experimental system is built, the normal state, left one and right six cylinders off the oil, air filter blockage (inlet wood blockage is 30%, the inlet has screen cloth.) in the load of 2565Nm, and the speeds of 1500r/min, 1800r/min, 2200r/min are studied. The experimental results analysis, feature extraction and fault diagnosis are finished based on the time domain and frequency domain. Keywords: engine, fault diagnosis, time domain, frequency domain.


2019 ◽  
Vol 9 (2) ◽  
pp. 311 ◽  
Author(s):  
Xiaofeng Lv ◽  
Deyun Zhou ◽  
Ling Ma ◽  
Yongchuan Tang

Aiming at solving the multiple fault diagnosis problem as well as the sequence of all the potential multiple faults simultaneously, a new multiple fault diagnosis method based on the dependency model method as well as the knowledge in test results and the prior probability of each fault type is proposed. Firstly, the dependency model of the system can be built and used to formulate the fault-test dependency matrix. Then, the dependency matrix is simplified according to the knowledge in the test results of the system. After that, the logic ‘OR’ operation is performed on the feature vectors of the fault status in the simplified dependency matrix to formulate the multiple fault dependency matrix. Finally, fault diagnosis is based on the multiple fault dependency matrix and the ranking of each fault type calculated basing on the prior probability of each fault status. An illustrative numerical example and a case study are presented to verify the effectiveness and superiority of the proposed method.


Information ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 410
Author(s):  
Xiaozhe Sun ◽  
Xingjian Wang ◽  
Siru Lin

The aviation hydraulic actuator (HA) is a key component of the flight control system in an aircraft. It is necessary to consider the occurrence of multiple faults under harsh conditions during a flight. This study designs a multi-fault diagnosis method based on the updated interacting multiple model (UIMM). The correspondence between the failure modes and the key physical parameters of HA is found by analyzing the fault mode and mechanism. The key physical parameters of HA can be estimated by employing a series of extended Kalman filters (EKF) related to the different modes of HA. The models in UIMM are updated once the fault is determined. UIMM can reduce the number of fault models and avoid combinatorial explosion in the case of multiple faults. Simulation results indicate that the multi-fault diagnosis method based on UIMM is effective for multi-fault diagnosis of electro-hydraulic servo actuation system.


Sign in / Sign up

Export Citation Format

Share Document