Angiogenesis at the Interface between Basic and Clinical Research

1999 ◽  
Vol 14 (4) ◽  
pp. 202-206 ◽  
Author(s):  
A. Albini ◽  
D. Noonan ◽  
L. Santi

The field of antiangiogenesis has shown a remarkably rapid evolution from the discovery at the bench to translation into the clinic. Currently a wide variety of compounds are in clinical trial as inhibitors of angiogenesis, and new compounds are being frequently added. The target cell of most angiogenesis inhibitors is the endothelial cell, with inhibitors that selectively affect a number of endothelial cell functions acquired during angiogenesis, including activation, proliferation, migration, invasion and survival. The endothelial cell may also be targeted by chemotherapeutic agents currently in use. The high doses and intermittent treatment schedules used to fight resistant tumor cells may be altered towards lower doses and chronic administration to obtain selective inhibition of angiogenic factor-stimulated endothelial cells as adjuvant therapy. Finally, gene therapy is a promising route for the delivery of novel protein inhibitors of angiogenesis, and is actively being investigated.

Author(s):  
Jingjing Wang ◽  
Huixin Peng ◽  
Ayse Anil Timur ◽  
Vinay Pasupuleti ◽  
Yufeng Yao ◽  
...  

Objective: Angiogenic factor AGGF1 (angiogenic factor and G-patch and FHA [Forkhead-associated] domain 1) promotes angiogenesis as potently as VEGFA (vascular endothelial growth factor A) and regulates endothelial cell (EC) proliferation, migration, specification of multipotent hemangioblasts and venous ECs, hematopoiesis, and vascular development and causes vascular disease Klippel-Trenaunay syndrome when mutated. However, the receptor for AGGF1 and the underlying molecular mechanisms remain to be defined. Approach and Results: Using functional blocking studies with neutralizing antibodies, we identified α5β1 as the receptor for AGGF1 on ECs. AGGF1 interacts with α5β1 and activates FAK (focal adhesion kinase), Src, and AKT. Functional analysis of 12 serial N-terminal deletions and 13 C-terminal deletions by every 50 amino acids mapped the angiogenic domain of AGGF1 to a domain between amino acids 604-613 (FQRDDAPAS). The angiogenic domain is required for EC adhesion and migration, capillary tube formation, and AKT activation. The deletion of the angiogenic domain eliminated the effects of AGGF1 on therapeutic angiogenesis and increased blood flow in a mouse model for peripheral artery disease. A 40-mer or 15-mer peptide containing the angiogenic domain blocks AGGF1 function, however, a 15-mer peptide containing a single amino acid mutation from −RDD- to −RGD- (a classical RGD integrin-binding motif) failed to block AGGF1 function. Conclusions: We have identified integrin α5β1 as an EC receptor for AGGF1 and a novel AGGF1-mediated signaling pathway of α5β1-FAK-Src-AKT for angiogenesis. Our results identify an FQRDDAPAS angiogenic domain of AGGF1 crucial for its interaction with α5β1 and signaling.


2020 ◽  
Vol 25 (46) ◽  
pp. 4883-4892 ◽  
Author(s):  
Mitra Korani ◽  
Shahla Korani ◽  
Elham Zendehdel ◽  
Amin Reza Nikpoor ◽  
Mahmoud Reza Jaafari ◽  
...  

: Bortezomib (VELCADE®) is a boronate peptide and first-in-class proteasome inhibitor serving an important role in degenerating several intracellular proteins. It is a reversible inhibitor of the 26S proteasome, with antitumor activity and antiproliferative properties. This agent principally exerts its antineoplastic effects by inhibiting key players in the nuclear factor κB (NFκB) pathway involved in cell proliferation, apoptosis, and angiogenesis. This medication is used in the management of multiple myeloma. However, more recently, it has been used as a therapeutic option for mantle cell lymphoma. While promising, bortezomib has limited clinical applications due to its adverse effects (e.g., hematotoxicity and peripheral neuropathy) and low effectiveness in solid tumors resulting from its poor penetration into such masses and suboptimal pharmacokinetic parameters. Other limitations to bortezomib include its low chemical stability and bioavailability, which can be overcome by using nanoparticles for its delivery. Nanoparticle delivery systems can facilitate the targeted delivery of chemotherapeutic agents in high doses to the target site, while sparing healthy tissues. Therefore, this drug delivery system has provided a solution to circumvent the limitations faced with the delivery of traditional cancer chemotherapeutic agents. Our aim in this review was to describe polymer-based nanocarriers that can be used for the delivery of bortezomib in cancer chemotherapy.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 738
Author(s):  
Sasikarn Looprasertkul ◽  
Amornpun Sereemaspun ◽  
Nakarin Kitkumthorn ◽  
Kanidta Sooklert ◽  
Tewarit Sarachana ◽  
...  

Gold nanoparticles (AuNPs) are used for diagnostic and therapeutic purposes, especially antiangiogenesis, which are accomplished via inhibition of endothelial cell proliferation, migration, and tube formation. However, no research has been performed on the effects of AuNPs in pericytes, which play vital roles in endothelial cell functions and capillary tube formation during physiological and pathological processes. Therefore, the effects of AuNPs on the morphology and functions of pericytes need to be elucidated. This study treated human placental pericytes in monoculture with 20 nm AuNPs at a concentration of 30 ppm. Ki-67 and platelet-derived growth factor receptor-β (PDGFR-β) mRNA expression was measured using real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Cell migration was assessed by Transwell migration assay. The fine structures of pericytes were observed by transmission electron microscopy. In addition, 30 ppm AuNP-treated pericytes and intact human umbilical vein endothelial cells were cocultured on Matrigel to form three-dimensional (3D) capillary tubes. The results demonstrated that AuNPs significantly inhibited proliferation, reduced PDGFR-β mRNA expression, and decreased migration in pericytes. Ultrastructural analysis of pericytes revealed AuNPs in late endosomes, autolysosomes, and mitochondria. Remarkably, many mitochondria were swollen or damaged. Additionally, capillary tube formation was reduced. We found that numerous pericytes on 3D capillary tubes were round and did not extend their processes along the tubes, which resulted in more incomplete tube formation in the treatment group compared with the control group. In summary, AuNPs can affect pericyte proliferation, PDGFR-β mRNA expression, migration, morphology, and capillary tube formation. The findings highlight the possible application of AuNPs in pericyte-targeted therapy for antiangiogenesis.


2020 ◽  
Vol 10 (01) ◽  
pp. e104-e109
Author(s):  
Antonio Molina-Carballo ◽  
Antonio Emilio Jerez-Calero ◽  
Antonio Muñoz-Hoyos

AbstractMelatonin, produced in every cell that possesses mitochondria, acts as an endogenous free radical scavenger, and improves energetic metabolism and immune function, by complex molecular crosstalk with other intracellular compounds. There is greatly increasing evidence regarding beneficial effects of acute and chronic administration of high melatonin doses, in infectious, developmental, and degenerative pathologies, as an endothelial cell and every cell protectant.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3866
Author(s):  
Natasha Irrera ◽  
Alessandra Bitto ◽  
Emanuela Sant’Antonio ◽  
Rita Lauro ◽  
Caterina Musolino ◽  
...  

The endocannabinoid system (ECS) is a composite cell-signaling system that allows endogenous cannabinoid ligands to control cell functions through the interaction with cannabinoid receptors. Modifications of the ECS might contribute to the pathogenesis of different diseases, including cancers. However, the use of these compounds as antitumor agents remains debatable. Pre-clinical experimental studies have shown that cannabinoids (CBs) might be effective for the treatment of hematological malignancies, such as leukemia and lymphoma. Specifically, CBs may activate programmed cell death mechanisms, thus blocking cancer cell growth, and may modulate both autophagy and angiogenesis. Therefore, CBs may have significant anti-tumor effects in hematologic diseases and may synergistically act with chemotherapeutic agents, possibly also reducing chemoresistance. Moreover, targeting ECS might be considered as a novel approach for the management of graft versus host disease, thus reducing some symptoms such as anorexia, cachexia, fatigue, anxiety, depression, and neuropathic pain. The aim of the present review is to collect the state of the art of CBs effects on hematological tumors, thus focusing on the essential topics that might be useful before moving into the clinical practice.


Blood ◽  
1994 ◽  
Vol 84 (6) ◽  
pp. 1843-1850 ◽  
Author(s):  
E Arnaud ◽  
M Lafay ◽  
P Gaussem ◽  
V Picard ◽  
M Jandrot-Perrus ◽  
...  

Abstract An autoantibody, developed by a patient with severe and recurrent arterial thrombosis, was characterized to be directed against the anion- binding exosite of thrombin, and inhibited all thrombin interactions requiring this secondary binding site without interfering with the catalytic site. The effect of the antibody was studied on thrombin interactions with platelets and endothelial cells from human umbilical veins (HUVEC). The autoantibody specifically and concentration- dependently inhibited alpha-thrombin-induced platelet activation and prostacyclin (PGI2) synthesis from HUVEC. It had no effect when gamma- thrombin or the thrombin receptor activation peptide SFLLR were the inducers. The effect of the antibody on protein C activation has been studied. The antibody blocked the thrombin-thrombomodulin activation of protein C. The inhibition of the activation was maximal with a low concentration of thrombomodulin. The fact that the autoantibody inhibited concentration-dependent alpha-thrombin-induced platelet and endothelial cell functions emphasizes the crucial role of the anion- binding exosite of thrombin to activate its receptor. In regard to the pathology, the antibody inhibited two vascular processes implicated in thrombin-antithrombotic functions, PGI2 secretion, and protein C activation, which could be implicated in this arterial thrombotic disease.


2010 ◽  
Vol 298 (5) ◽  
pp. E1088-E1096 ◽  
Author(s):  
Diego Pérez-Tilve ◽  
Lucas González-Matías ◽  
Benedikt A. Aulinger ◽  
Mayte Alvarez-Crespo ◽  
Manuel Gil-Lozano ◽  
...  

Exendin-4 (Ex-4), an agonist of the glucagon-like peptide-1 receptor (GLP-1R), shares many of the actions of GLP-1 on pancreatic islets, the central nervous system (CNS), and the gastrointestinal tract that mediates glucose homeostasis and food intake. Because Ex-4 has a much longer plasma half-life than GLP-1, it is an effective drug for reducing blood glucose levels in patients with type 2 diabetes mellitus (T2DM). Here, we report that acute administration of Ex-4, in relatively high doses, into either the peripheral circulation or the CNS, paradoxically increased blood glucose levels in rats. This effect was independent of the insulinotropic and hypothalamic-pituitary-adrenal activating actions of Ex-4 and could be blocked by a GLP-1R antagonist. Comparable doses of GLP-1 did not induce hyperglycemia, even when protected from rapid metabolism by a dipeptidyl peptidase IV inhibitor. Acute hyperglycemia induced by Ex-4 was blocked by hexamethonium, guanethidine, and adrenal medullectomy, indicating that this effect was mediated by sympathetic nervous system (SNS) activation. The potency of Ex-4 to elevate blood glucose waned with chronic administration such that after 6 days the familiar actions of Ex-4 to improve glucose tolerance were evident. These findings indicate that, in rats, high doses of Ex-4 activate a SNS response that can overcome the expected benefits of this peptide on glucose metabolism and actually raise blood glucose. These results have important implications for the design and interpretation of studies using Ex-4 in rats. Moreover, since there are many similarities in the response of the GLP-1R system across mammalian species, it is important to consider whether there is acute activation of the SNS by Ex-4 in humans.


2006 ◽  
Vol 396 (2) ◽  
pp. 277-285 ◽  
Author(s):  
Chrysoula Panethymitaki ◽  
Paul W. Bowyer ◽  
Helen P. Price ◽  
Robin J. Leatherbarrow ◽  
Katherine A. Brown ◽  
...  

The eukaryotic enzyme NMT (myristoyl-CoA:protein N-myristoyltransferase) has been characterized in a range of species from Saccharomyces cerevisiae to Homo sapiens. NMT is essential for viability in a number of human pathogens, including the fungi Candida albicans and Cryptococcus neoformans, and the parasitic protozoa Leishmania major and Trypanosoma brucei. We have purified the Leishmania and T. brucei NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and specific peptide substrates. A number of inhibitory compounds that target NMT in fungal species have been tested against the parasite enzymes in vitro and against live parasites in vivo. Two of these compounds inhibit TbNMT with IC50 values of <1 μM and are also active against mammalian parasite stages, with ED50 (the effective dose that allows 50% cell growth) values of 16–66 μM and low toxicity to murine macrophages. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against infectious diseases including African sleeping sickness and Nagana.


2018 ◽  
Vol 48 (4) ◽  
pp. 1804-1814 ◽  
Author(s):  
Xing Rong ◽  
Donghui Ge ◽  
Danping Shen ◽  
Xianda Chen ◽  
Xuliang Wang ◽  
...  

Background/Aims: Increasing evidence indicates that microRNAs (miRNAs) play important roles in Kawasaki disease (KD). Our previous study demonstrated that hsa-miR-27b-3p (miR-27b) was up-regulated in KD serum. However, the specific role of miR-27b in KD remains unclear. We aimed to investigate that miR-27b could be a biomarker and therapeutic target for KD treatment. As well, the specific mechanism of miR-27b effecting endothelial cell functions was studied. Methods: The expression of miR-27b and Smad7 was measured by qRT-PCR. Gain-of-function strategy was used to observe the effect of miR-27b on human umbilical vein endothelial cells (HUVECs) proliferation and migration. Bioinformatics analyses were applied to predict miR-27b targets and then we verified Smad7 by a luciferase reporter assay. Western blot was performed to detect the protein expression of Smad7, PCNA, MMP9, MMP12 and TGF-β-related genes. Results: We confirmed that miR-27b was shown to be dramatically up-regulated in KD serum and KD serum-treated HUVECs and that elevated expression of miR-27b suppressed the proliferation and migration of HUVECs. Furthermore, our results verified that miR-27b mediated cell functions by affecting the TGF-β via targeting Smad7 in HUVECs. Conclusion: These results suggested that up-regulated miR-27b had a protective role in HUVECs proliferation and migration via targeting Smad7 and affecting TGF-β pathway. Therefore, miR-27b represented a potential biomarker for KD and may serve as a promising therapeutic target for KD treatment.


Sign in / Sign up

Export Citation Format

Share Document