scholarly journals Creative design for sandwich structures: A review

2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092132
Author(s):  
Yixiong Feng ◽  
Hao Qiu ◽  
Yicong Gao ◽  
Hao Zheng ◽  
Jianrong Tan

Sandwich structures are important innovative multifunctional structures with the advantages of low density and high performance. Creative design for sandwich structures is a design process based on sandwich core structure evolution mechanisms, material design method, and panel (including core structure and facing sheets) performance prediction model. The review outlines recent research efforts on creative design for sandwich structures with different core constructions such as corrugated core, honeycomb core, foam core, truss core, and folded cores. The topics discussed in this review article include aspects of sandwich core structure design, material design, and mechanical properties, and panel performance and damage. In addition, examples of engineering applications of sandwich structures are discussed. Further research directions and potential applications are summarized.

2021 ◽  
Author(s):  
Xuecong Sun ◽  
Han Jia ◽  
Yuzhen Yang ◽  
Han Zhao ◽  
Yafeng Bi ◽  
...  

Abstract From ancient to modern times, acoustic structures have been used to control the propagation of acoustic waves. However, the design of acoustic structures has remained a time-consuming and computational resource-consuming iterative process. In recent years, deep learning has attracted unprecedented attention for its ability to tackle hard problems with large datasets, achieving state-of-the-art results in various tasks. In this work, an acoustic structure design method is proposed based on deep learning. Taking the design of multiorder Helmholtz resonator as an example, we experimentally demonstrate the effectiveness of the proposed method. Our method is not only able to give a very accurate prediction of the geometry of acoustic structures with multiple strong-coupling parameters, but also capable of improving the performance of evolutionary approaches in optimization for a desired property. Compared with the conventional numerical methods, our method is more efficient, universal and automatic, and it has a wide range of potential applications, such as speech enhancement, sound absorption and insulation.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Jilong Ye ◽  
Fan Zhang ◽  
Zhangming Shen ◽  
Shunze Cao ◽  
Tianqi Jin ◽  
...  

AbstractTo address the resource-competing issue between high sensitivity and wide working range for a stand-alone sensor, development of capacitive sensors with an adjustable gap between two electrodes has been of growing interest. While several approaches have been developed to fabricate tunable capacitive sensors, it remains challenging to achieve, simultaneously, a broad range of tunable sensitivity and working range in a single device. In this work, a 3D capacitive sensor with a seesaw-like shape is designed and fabricated by the controlled compressive buckling assembly, which leverages the mechanically tunable configuration to achieve high-precision force sensing (resolution ~5.22 nN) and unprecedented adjustment range (by ~33 times) of sensitivity. The mechanical tests under different loading conditions demonstrate the stability and reliability of capacitive sensors. Incorporation of an asymmetric seesaw-like structure design in the capacitive sensor allows the acceleration measurement with a tunable sensitivity. These results suggest simple and low-cost routes to high-performance, tunable 3D capacitive sensors, with diverse potential applications in wearable electronics and biomedical devices.


2021 ◽  
Vol 11 (15) ◽  
pp. 6671
Author(s):  
Yisheng Chen ◽  
Qianglong Wang ◽  
Chong Wang ◽  
Peng Gong ◽  
Yincheng Shi ◽  
...  

In the aerospace industry, spacecraft often serve in harsh operating environments, so the design of ultra-lightweight and high-performance structures is a major requirement in aerospace structure design. In this article, a lightweight aerospace bracket considering fatigue performance was designed by topology optimization and manufactured by 3D-printing. Considering the requirements of assembly with a fixture for fatigue testing and avoiding stress concentration, a reconstructed model was presented by CAD software before manufacturing. To improve the fatigue performance of the structure, this article proposes the design idea of abstracting the practiced working condition of the bracket subjected to cycle loads in the vertical direction via a multiple load-case topology optimization problem by minimizing compliance under a variety of asymmetric extreme loading conditions. Parameter sweeping was used to improve the computational efficiency. The mass of the new bracket was reduced by 37% compared to the original structure. Both numerical simulation and the fatigue test were implemented to support the validity of the new bracket. This work indicates that the integration of the proposed topology optimization design method and additive manufacturing can be a powerful tool for the design of lightweight structures considering fatigue performance.


Author(s):  
A. Ferrerón Labari ◽  
D. Suárez Gracia ◽  
V. Viñals Yúfera

In the last years, embedded systems have evolved so that they offer capabilities we could only find before in high performance systems. Portable devices already have multiprocessors on-chip (such as PowerPC 476FP or ARM Cortex A9 MP), usually multi-threaded, and a powerful multi-level cache memory hierarchy on-chip. As most of these systems are battery-powered, the power consumption becomes a critical issue. Achieving high performance and low power consumption is a high complexity challenge where some proposals have been already made. Suarez et al. proposed a new cache hierarchy on-chip, the LP-NUCA (Low Power NUCA), which is able to reduce the access latency taking advantage of NUCA (Non-Uniform Cache Architectures) properties. The key points are decoupling the functionality, and utilizing three specialized networks on-chip. This structure has been proved to be efficient for data hierarchies, achieving a good performance and reducing the energy consumption. On the other hand, instruction caches have different requirements and characteristics than data caches, contradicting the low-power embedded systems requirements, especially in SMT (simultaneous multi-threading) environments. We want to study the benefits of utilizing small tiled caches for the instruction hierarchy, so we propose a new design, ID-LP-NUCAs. Thus, we need to re-evaluate completely our previous design in terms of structure design, interconnection networks (including topologies, flow control and routing), content management (with special interest in hardware/software content allocation policies), and structure sharing. In CMP environments (chip multiprocessors) with parallel workloads, coherence plays an important role, and must be taken into consideration.


2020 ◽  
Vol 16 (4) ◽  
pp. 462-477 ◽  
Author(s):  
Patrizia Bocchetta ◽  
Domenico Frattini ◽  
Miriana Tagliente ◽  
Filippo Selleri

By collecting and analyzing relevant literature results, we demonstrate that the nanostructuring of polypyrrole (PPy) electrodes is a crucial strategy to achieve high performance and stability in energy devices such as fuel cells, lithium batteries and supercapacitors. In this critic and comprehensive review, we focus the attention on the electrochemical methods for deposition of PPy, nanostructures and potential applications, by analyzing the effect of different physico-chemical parameters, electro-oxidative conditions including template-based or template-free depositions and cathodic polymerization. Diverse interfaces and morphologies of polymer nanodeposits are also discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Shijun Chen ◽  
Qi Zhang ◽  
Surong Huang

To more efficiently design high performance vehicular permanent magnet motor, an electromagnetic-thermal integration design method is presented, which considers both the electromagnetic properties and the temperature rise of motor winding when determining the main dimensional parameters of the motor. Then a 48-slot and 8-pole vehicular permanent magnet motor is designed with this method. The thermomagnetic coupling design is simulated and validated on the basis of multiphysical domain on finite element analysis. Then the prototype is analyzed and tested on a newly built motor experiment platform. It is shown that the simulation results and experimental results are consistent, which validate the accuracy and effectiveness of the new design method. Also this method is proved to well improve the efficiency of permanent magnet motor design.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Yingfeng Zhao ◽  
Jianhua Liu ◽  
Jiangtao Ma ◽  
Linlin Wu

AbstractCurrent studies on cable harness layouts have mainly focused on cable harness route planning. However, the topological structure of a cable harness is also extremely complex, and the branch structure of the cable harness can affect the route of the cable harness layout. The topological structure design of the cable harness is a key to such a layout. In this paper, a novel multi-branch cable harness layout design method is presented, which unites the probabilistic roadmap method (PRM) and the genetic algorithm. First, the engineering constraints of the cable harness layout are presented. An obstacle-based PRM used to construct non-interference and near to the surface roadmap is then described. In addition, a new genetic algorithm is proposed, and the algorithm structure of which is redesigned. In addition, the operation probability formula related to fitness is proposed to promote the efficiency of the branch structure design of the cable harness. A prototype system of a cable harness layout design was developed based on the method described in this study, and the method is applied to two scenarios to verify that a quality cable harness layout can be efficiently obtained using the proposed method. In summary, the cable harness layout design method described in this study can be used to quickly design a reasonable topological structure of a cable harness and to search for the corresponding routes of such a harness.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 197
Author(s):  
Giorgia Giovannini ◽  
René M. Rossi ◽  
Luciano F. Boesel

The development of hybrid materials with unique optical properties has been a challenge for the creation of high-performance composites. The improved photophysical and photochemical properties observed when fluorophores interact with clay minerals, as well as the accessibility and easy handling of such natural materials, make these nanocomposites attractive for designing novel optical hybrid materials. Here, we present a method of promoting this interaction by conjugating dyes with chitosan. The fluorescent properties of conjugated dye–montmorillonite (MMT) hybrids were similar to those of free dye–MMT hybrids. Moreover, we analyzed the relationship between the changes in optical properties of the dye interacting with clay and its structure and defined the physical and chemical mechanisms that take place upon dye–MMT interactions leading to the optical changes. Conjugation to chitosan additionally ensures stable adsorption on clay nanoplatelets due to the strong electrostatic interaction between chitosan and clay. This work thus provides a method to facilitate the design of solid-state hybrid nanomaterials relevant for potential applications in bioimaging, sensing and optical purposes.


Sign in / Sign up

Export Citation Format

Share Document