scholarly journals Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning

2017 ◽  
Vol 12 (6) ◽  
pp. 1100-1122 ◽  
Author(s):  
Tal Yarkoni ◽  
Jacob Westfall

Psychology has historically been concerned, first and foremost, with explaining the causal mechanisms that give rise to behavior. Randomized, tightly controlled experiments are enshrined as the gold standard of psychological research, and there are endless investigations of the various mediating and moderating variables that govern various behaviors. We argue that psychology’s near-total focus on explaining the causes of behavior has led much of the field to be populated by research programs that provide intricate theories of psychological mechanism but that have little (or unknown) ability to predict future behaviors with any appreciable accuracy. We propose that principles and techniques from the field of machine learning can help psychology become a more predictive science. We review some of the fundamental concepts and tools of machine learning and point out examples where these concepts have been used to conduct interesting and important psychological research that focuses on predictive research questions. We suggest that an increased focus on prediction, rather than explanation, can ultimately lead us to greater understanding of behavior.

2020 ◽  
Author(s):  
Shreya Reddy ◽  
Lisa Ewen ◽  
Pankti Patel ◽  
Prerak Patel ◽  
Ankit Kundal ◽  
...  

<p>As bots become more prevalent and smarter in the modern age of the internet, it becomes ever more important that they be identified and removed. Recent research has dictated that machine learning methods are accurate and the gold standard of bot identification on social media. Unfortunately, machine learning models do not come without their negative aspects such as lengthy training times, difficult feature selection, and overwhelming pre-processing tasks. To overcome these difficulties, we are proposing a blockchain framework for bot identification. At the current time, it is unknown how this method will perform, but it serves to prove the existence of an overwhelming gap of research under this area.<i></i></p>


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Alexander G. Donchev ◽  
Andrew G. Taube ◽  
Elizabeth Decolvenaere ◽  
Cory Hargus ◽  
Robert T. McGibbon ◽  
...  

AbstractAdvances in computational chemistry create an ongoing need for larger and higher-quality datasets that characterize noncovalent molecular interactions. We present three benchmark collections of quantum mechanical data, covering approximately 3,700 distinct types of interacting molecule pairs. The first collection, which we refer to as DES370K, contains interaction energies for more than 370,000 dimer geometries. These were computed using the coupled-cluster method with single, double, and perturbative triple excitations [CCSD(T)], which is widely regarded as the gold-standard method in electronic structure theory. Our second benchmark collection, a core representative subset of DES370K called DES15K, is intended for more computationally demanding applications of the data. Finally, DES5M, our third collection, comprises interaction energies for nearly 5,000,000 dimer geometries; these were calculated using SNS-MP2, a machine learning approach that provides results with accuracy comparable to that of our coupled-cluster training data. These datasets may prove useful in the development of density functionals, empirically corrected wavefunction-based approaches, semi-empirical methods, force fields, and models trained using machine learning methods.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5953 ◽  
Author(s):  
Parastoo Alinia ◽  
Ali Samadani ◽  
Mladen Milosevic ◽  
Hassan Ghasemzadeh ◽  
Saman Parvaneh

Automated lying-posture tracking is important in preventing bed-related disorders, such as pressure injuries, sleep apnea, and lower-back pain. Prior research studied in-bed lying posture tracking using sensors of different modalities (e.g., accelerometer and pressure sensors). However, there remain significant gaps in research regarding how to design efficient in-bed lying posture tracking systems. These gaps can be articulated through several research questions, as follows. First, can we design a single-sensor, pervasive, and inexpensive system that can accurately detect lying postures? Second, what computational models are most effective in the accurate detection of lying postures? Finally, what physical configuration of the sensor system is most effective for lying posture tracking? To answer these important research questions, in this article we propose a comprehensive approach for designing a sensor system that uses a single accelerometer along with machine learning algorithms for in-bed lying posture classification. We design two categories of machine learning algorithms based on deep learning and traditional classification with handcrafted features to detect lying postures. We also investigate what wearing sites are the most effective in the accurate detection of lying postures. We extensively evaluate the performance of the proposed algorithms on nine different body locations and four human lying postures using two datasets. Our results show that a system with a single accelerometer can be used with either deep learning or traditional classifiers to accurately detect lying postures. The best models in our approach achieve an F1 score that ranges from 95.2% to 97.8% with a coefficient of variation from 0.03 to 0.05. The results also identify the thighs and chest as the most salient body sites for lying posture tracking. Our findings in this article suggest that, because accelerometers are ubiquitous and inexpensive sensors, they can be a viable source of information for pervasive monitoring of in-bed postures.


2021 ◽  
Author(s):  
Eunjeong Park ◽  
Kijeong Lee ◽  
Taehwa Han ◽  
Hyo Suk Nam

BACKGROUND Assessing the symptoms of proximal weakness caused by neurological deficits requires expert knowledge and experienced neurologists. Recent advances in artificial intelligence and the Internet of Things have resulted in the development of automated systems that emulate physicians’ assessments. OBJECTIVE This study provides an agreement and reliability analysis of using an automated scoring system to evaluate proximal weakness by experts and non-experts. METHODS We collected 144 observations from acute stroke patients in a neurological intensive care unit to measure the symptom of proximal weakness of upper and lower limbs. A neurologist performed a gold standard assessment and two medical students performed identical tests as non-expert assessments for manual and machine learning-based scaling of Medical Research Council (MRC) proximal scores. The system collects signals from sensors attached on patients’ limbs and trains a machine learning assessment model using the hybrid approach of data-level and algorithm-level methods for the ordinal and imbalanced classification in multiple classes. For the agreement analysis, we investigated the percent agreement of MRC proximal scores and Bland-Altman plots of kinematic features between the expert- and non-expert scaling. In the reliability analysis, we analysed the intra-class correlation coefficients (ICCs) of kinematic features and Krippendorff’s alpha of the three observers’ scaling. RESULTS The mean percent agreement between the gold standard and the non-expert scaling was 0.542 for manual scaling and 0.708 for IoT-assisted machine learning scaling, with 30.63% enhancement. The ICCs of kinematic features measured using sensors ranged from 0.742 to 0.850, whereas the Krippendorff’s alpha of manual scaling for the three observers was 0.275. The Krippendorff’s alpha of machine learning scaling increased to 0.445, with 61.82% improvement. CONCLUSIONS Automated scaling using sensors and machine learning provided higher inter-rater agreement and reliability in assessing acute proximal weakness. The enhanced assessment supported by the proposed system can be utilized as a reliable assessment tool for non-experts in various emergent environments.


2021 ◽  
Vol 72 ◽  
pp. 1385-1470
Author(s):  
Alexandra N. Uma ◽  
Tommaso Fornaciari ◽  
Dirk Hovy ◽  
Silviu Paun ◽  
Barbara Plank ◽  
...  

Many tasks in Natural Language Processing (NLP) and Computer Vision (CV) offer evidence that humans disagree, from objective tasks such as part-of-speech tagging to more subjective tasks such as classifying an image or deciding whether a proposition follows from certain premises. While most learning in artificial intelligence (AI) still relies on the assumption that a single (gold) interpretation exists for each item, a growing body of research aims to develop learning methods that do not rely on this assumption. In this survey, we review the evidence for disagreements on NLP and CV tasks, focusing on tasks for which substantial datasets containing this information have been created. We discuss the most popular approaches to training models from datasets containing multiple judgments potentially in disagreement. We systematically compare these different approaches by training them with each of the available datasets, considering several ways to evaluate the resulting models. Finally, we discuss the results in depth, focusing on four key research questions, and assess how the type of evaluation and the characteristics of a dataset determine the answers to these questions. Our results suggest, first of all, that even if we abandon the assumption of a gold standard, it is still essential to reach a consensus on how to evaluate models. This is because the relative performance of the various training methods is critically affected by the chosen form of evaluation. Secondly, we observed a strong dataset effect. With substantial datasets, providing many judgments by high-quality coders for each item, training directly with soft labels achieved better results than training from aggregated or even gold labels. This result holds for both hard and soft evaluation. But when the above conditions do not hold, leveraging both gold and soft labels generally achieved the best results in the hard evaluation. All datasets and models employed in this paper are freely available as supplementary materials.


2019 ◽  
Vol 5 (2) ◽  
pp. 69-84 ◽  
Author(s):  
Anna Jupowicz-Ginalska

Abstract Fear of Missing Out is mainly a subject of psychological research; however, due to its specific nature, it gains an interdisciplinary character. Thanks to this, it can also be analysed from the perspective of media or business. This paper focuses on the threads of the relationship between FOMO and marketing communication online. It realizes the following objectives: it presents the scale of FOMO in Poland; it analyses the phenomenon in the context of consumers’ reactions to basic brand activity on social and it shows differences between the answers given by all the respondents and those with high FOMO. In order to clarify the scope of the research work, four research questions are answered: how do social media users react to the use of particular features of social platforms by brands? What form of posts coming from brands are preferred by Polish Internet users? What is the attitude of the respondents towards advertisements posted on social media portals? Does FOMO influence the answers in any way? The research was based on the nationwide, representative sample of Internet users aged 15+ (N=1060). The tool was the CAWI questionnaire.


2020 ◽  
Author(s):  
Madis Vasser ◽  
Jaan Aru

Virtual reality (VR) holds immense promise as a research tool to deliver results that are generalizable to the real world. However, the methodology used in different VR studies varies substantially. While many of these approaches claim to use “immersive VR”, the different hardware and software choices lead to issues regarding reliability and validity of psychological VR research. Questions arise about quantifying presence, the optimal level of graphical realism, the problem of being in dual-realities and reproducibility of VR research. We discuss how VR research paradigms could be evaluated and offer a list of practical recommendations to have common guidelines for psychological VR research.


Cataract is a degenerative condition that, according to estimations, will rise globally. Even though there are various proposals about its diagnosis, there are remaining problems to be solved. This paper aims to identify the current situation of the recent investigations on cataract diagnosis using a framework to conduct the literature review with the intention of answering the following research questions: RQ1) Which are the existing methods for cataract diagnosis? RQ2) Which are the features considered for the diagnosis of cataracts? RQ3) Which is the existing classification when diagnosing cataracts? RQ4) And Which obstacles arise when diagnosing cataracts? Additionally, a cross-analysis of the results was made. The results showed that new research is required in: (1) the classification of “congenital cataract” and, (2) portable solutions, which are necessary to make cataract diagnoses easily and at a low cost.


Author(s):  
Sangeeta Lal ◽  
Neetu Sardana ◽  
Ashish Sureka

Log statements present in source code provide important information to the software developers because they are useful in various software development activities such as debugging, anomaly detection, and remote issue resolution. Most of the previous studies on logging analysis and prediction provide insights and results after analyzing only a few code constructs. In this chapter, the authors perform an in-depth, focused, and large-scale analysis of logging code constructs at two levels: the file level and catch-blocks level. They answer several research questions related to statistical and content analysis. Statistical and content analysis reveals the presence of differentiating properties among logged and nonlogged code constructs. Based on these findings, the authors propose a machine-learning-based model for catch-blocks logging prediction. The machine-learning-based model is found to be effective in catch-blocks logging prediction.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Stephanie Portelli ◽  
Yoochan Myung ◽  
Nicholas Furnham ◽  
Sundeep Chaitanya Vedithi ◽  
Douglas E. V. Pires ◽  
...  

Abstract Rifampicin resistance is a major therapeutic challenge, particularly in tuberculosis, leprosy, P. aeruginosa and S. aureus infections, where it develops via missense mutations in gene rpoB. Previously we have highlighted that these mutations reduce protein affinities within the RNA polymerase complex, subsequently reducing nucleic acid affinity. Here, we have used these insights to develop a computational rifampicin resistance predictor capable of identifying resistant mutations even outside the well-defined rifampicin resistance determining region (RRDR), using clinical M. tuberculosis sequencing information. Our tool successfully identified up to 90.9% of M. tuberculosis rpoB variants correctly, with sensitivity of 92.2%, specificity of 83.6% and MCC of 0.69, outperforming the current gold-standard GeneXpert-MTB/RIF. We show our model can be translated to other clinically relevant organisms: M. leprae, P. aeruginosa and S. aureus, despite weak sequence identity. Our method was implemented as an interactive tool, SUSPECT-RIF (StrUctural Susceptibility PrEdiCTion for RIFampicin), freely available at https://biosig.unimelb.edu.au/suspect_rif/.


Sign in / Sign up

Export Citation Format

Share Document