scholarly journals Phenotypic switch of human and mouse macrophages and resultant effects on apoptosis resistance in hepatocytes

2019 ◽  
Vol 25 (3) ◽  
pp. 176-185 ◽  
Author(s):  
Li Bai ◽  
Yu Chen ◽  
Sujun Zheng ◽  
Feng Ren ◽  
Ming Kong ◽  
...  

Acute-on-chronic liver failure (ACLF) carries a significant burden on critical care services and health care resources. However, the exact pathogenesis of ACLF remains to be elucidated, and novel treatments are desperately required. In our previous work, we utilized mice subjected to acute insult in the context of hepatic fibrosis to simulate the development of ACLF and documented the favorable hepatoprotection conferred by M2-like macrophages in vivo and in vitro. In the present study, we focused on the phenotypic switch of human and mouse macrophages and assessed the effects of this switch on apoptosis resistance in hepatocytes. For this purpose, human and mouse macrophages were isolated and polarized into M0, M(IFN-γ), M(IFN-γ→IL-4), M(IL-4) or M(IL-4→IFN-γ) subsets. Conditioned media (CM) from these subsets were applied to human and mouse hepatocytes followed by apoptosis induction. Cell apoptosis was evaluated by immunostaining for cleaved caspase-3. As a result, M(IFN-γ) or M(IL-4) macrophages switched their phenotype into M(IFN-γ→IL-4) or M(IL-4→IFN-γ) through reprogramming with IL-4 or IFN-γ, respectively. Importantly, hepatocytes pre-treated with M(IFN-γ→IL-4) CMs exhibited much weaker expression of cleaved caspase-3, compared to those pre-treated with M(IFN-γ) CM, and vice versa. Together, phenotypic switch of macrophages toward M(IL-4) phenotype confers hepatocytes enhanced resistance to apoptosis.

Cartilage ◽  
2021 ◽  
pp. 194760352110235
Author(s):  
Hongjun Zhang ◽  
Wendi Zheng ◽  
Du Li ◽  
Jia Zheng

Objective miR-146a-5p was found to be significantly upregulated in cartilage tissue of patients with osteoarthritis (OA). NUMB was shown to be involved in the autophagy regulation process of cells. We aimed to learn whether NUMB was involved in the apoptosis or autophagy process of chondrocytes in OA and related with miR-146a-5p. Methods QRT-PCR was used to detect miR-146a-5p level in 22 OA cartilage tissues and 22 controls. The targets of miR-146a-5p were analyzed using software and the luciferase reporter experiment. The apoptosis and autophagy, and related proteins were detected in chondrocytes treated with miR-146a-5p mimic/inhibitor or pcDNA3.1-NUMB/si-NUMB and IL-1β, respectively. In vivo experiment, intra-articular injection of miR-146a-5p antagomir/NC was administered at the knee of OA male mice before and after model construction. Chondrocyte apoptosis and the expression of apoptosis and autophagy-related proteins were also detected. Results miR-146a-5p was highly expressed in knee cartilage tissue of patients with OA, while NUMB was lowly expressed and negatively regulated by miR-146a-5p. Upregulation of miR-146a-5p can promote cell apoptosis and reduce autophagy of human and mouse chondrocytes by modulating the levels of cleaved caspase-3, cleaved PARP, Bax, Beclin 1, ATG5, p62, LC3-I, and LC3-II. Increasing the low level of NUMB reversed the effects of miR-146a-5p on chondrocyte apoptosis and autophagy. Intra-articular injection of miR-146a-5p antagomir can also reverse the effects of miR-146a-5p on the apoptosis and autophagy of knee joint chondrocytes in OA mice. Conclusion Downregulation of miR-146a-5p suppresses the apoptosis and promotes autophagy of chondrocytes by targeting NUMB in vivo and in vitro.


2004 ◽  
Vol 286 (1) ◽  
pp. L4-L14 ◽  
Author(s):  
Olivier Lesur ◽  
Marcel Brisebois ◽  
Alexandre Thibodeau ◽  
Frédéric Chagnon ◽  
Denis Lane ◽  
...  

In the present study, IFN-γ exposure to primary cultures of rat type II epithelial cells (TIIP) upregulated membrane expression of the common γ-chain of the IL-2 receptor (∼2.5- to 4-fold increase) and redistributed receptor affinity in TIIP, as assessed by Western blot, cell, and tissue histochemistry and Scatchard analysis. As for restitution processes of the lung epithelium, functionality of IL-2R on TIIP was conditional to IFN-γ exposure: 1) IFN-γ priming promoted a fivefold increase of IL-2-driven TIIP locomotion ( P < 0.05 vs. control at 100 U/ml) and 2) IFN-γ coincubation with IL-2 reduced bleomycin-induced TIIP apoptosis in vitro by 25% (caspase-3 activity) and by ∼70% (TdT-mediated dUTP nick end labeling/4′,6′-diamidino-2-phenylindole assay) as well as in vivo by ∼90% (caspase-3 activity; P < 0.05 vs. control). Sustained p42/44 extracellular signal-regulated kinase activity played a protective role in this process, whereas specific inhibition by PD-98059 (50 μM) significantly reversed bleomycin-induced TIIP apoptosis ( P < 0.05 vs. control). From these in vitro and in vivo data, it is proposed that combinations of IFN-γ and IL-2 can drive repair activity of TIIP by stimulating migration and preventing programmed cell death, both of which are speculated to be very fast restitution events after oxidant-induced acute lung injury.


Marine Drugs ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 197 ◽  
Author(s):  
Wei Zhang ◽  
Takasi Okimura ◽  
Tatsuya Oda ◽  
Jun-O Jin

Natural marine polysaccharides have demonstrated immune stimulatory effects in both mice and humans. Our previous study compared the ability of ascophyllan and fucoidan to activate human and mouse dendritic cells (DCs). In this study, we further examined the effect of ascophyllan on the activation of mouse natural killer (NK) cells in vivo and in vitro and compared it to that of fucoidan, a well-studied natural marine polysaccharide. Specifically, administration of ascophyllan to C57BL/6 mice increased the number of NK cells in the spleen when compared to the number in PBS-treated mice. Moreover, the number of IFN-γ-producing NK cells and expression of CD69 were markedly upregulated by ascophyllan treatment. Ascophyllan treatment also induced IFN-γ production and CD69 upregulation in isolated NK cells, but did not promote cell proliferation. Finally, ascophyllan treatment increased the cytotoxicity of NK cells against Yac-1 cells. The effects of ascophyllan on NK cell activation were considerably stronger than those of fucoidan. These data demonstrated that ascophyllan promotes NK cell activation both in mice and in vitro, and its stimulatory effect on NK cells is stronger than that of fucoidan.


2001 ◽  
Vol 69 (10) ◽  
pp. 6156-6164 ◽  
Author(s):  
Tomoko Hayashi ◽  
Savita P. Rao ◽  
Kenji Takabayashi ◽  
John H. Van Uden ◽  
Richard S. Kornbluth ◽  
...  

ABSTRACT Bacterial DNA and its synthetic immunostimulatory oligodeoxynucleotide analogs (ISS-ODN) activate innate immunity and promote Th1 and cytotoxic T-lymphocyte immune responses. Based on these activities, we investigated whether ISS-ODN could modify the course ofMycobacterium avium infection. M. aviumgrowth in vitro was significantly inhibited by ISS-ODN treatment of human and mouse macrophages, and M. avium growth in vivo was similarly inhibited in C57BL/6 mice treated with ISS-ODN. This protective effect of ISS-ODN was largely independent of tumor necrosis factor alpha (TNF-α), interleukin 12 (IL-12), nitric oxide, NADPH oxidase, alpha/beta interferon (IFN-α/β), and IFN-γ. In contrast, we found that the induction of indoleamine 2,3-dioxygenase (IDO) was required for the antimycobacterial effect of ISS-ODN. To evaluate the potential for synergism between ISS-ODN and other antimycobacterial agents, treatment with a combination of ISS-ODN and clarithromycin (CLA) was tested in vitro and in vivo. ISS-ODN significantly enhanced the therapeutic effect of CLA in both human and mouse macrophages and in C57BL/6 mice. This study newly identifies IDO as being involved in the antimicrobial activity of ISS-ODN and suggests the usefulness of ISS-ODN when used in combination with conventional chemotherapy for microbial infections.


2013 ◽  
Vol 81 (9) ◽  
pp. 3346-3355 ◽  
Author(s):  
Sandra Bonne-Année ◽  
Laura A. Kerepesi ◽  
Jessica A. Hess ◽  
Amy E. O'Connell ◽  
James B. Lok ◽  
...  

ABSTRACTMacrophages are multifunctional cells that are active in TH1- and TH2-mediated responses. In this study, we demonstrate that human and mouse macrophages collaborate with neutrophils and complement to kill the parasiteStrongyloides stercoralis in vitro. Infection of mice with worms resulted in the induction of alternatively activated macrophages (AAMϕ) within the peritoneal cavity. These cells killed the wormsin vivoand collaborated with neutrophils and complement during thein vitrokilling process. AAMϕ generatedin vitrokilled larvae more rapidly than naive macrophages, which killed larvae after a longer time period. In contrast, classically activated macrophages were unable to kill larvae eitherin vitroorin vivo. This study adds macrophages to the armamentarium of immune components that function in elimination of parasitic helminths and demonstrate a novel function by which AAMϕ control large extracellular parasites.


2013 ◽  
Vol 150 (3) ◽  
pp. 1024-1031 ◽  
Author(s):  
Mohammad Hossein Boskabady ◽  
Sakine Shahmohammadi Mehrjardi ◽  
Abadorrahim Rezaee ◽  
Houshang Rafatpanah ◽  
Sediqeh Jalali

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mary Jo Rademacher ◽  
Anahi Cruz ◽  
Mary Faber ◽  
Robyn A. A. Oldham ◽  
Dandan Wang ◽  
...  

AbstractInterleukin-12 (IL-12) is an inflammatory cytokine that has demonstrated efficacy for cancer immunotherapy, but systemic administration has detrimental toxicities. Lentiviral transduction eliciting IL-12-producing human sarcoma for autologous reintroduction provides localized delivery for both innate and adaptive immune response augmentation. Sarcoma cell lines and primary human sarcoma samples were transduced with recombinant lentivirus engineering expression of human IL-12 (hu-IL-12). IL-12 expressing sarcomas were assessed in vitro and in vivo following implantation into humanized NSG and transgenic human IL-15 expressing (NSG.Tg(Hu-IL-15)) murine models. Lentiviral transduction (LV/hu-IL-12) of human osteosarcoma, Ewing sarcoma and rhabdomyosarcoma cell lines, as well as low-passage primary human sarcomas, engendered high-level expression of hu-IL-12. Hu-IL-12 demonstrated functional viability, eliciting specific NK cell-mediated interferon-γ (IFN-γ) release and cytotoxic growth restriction of spheroids in vitro. In orthotopic xenograft murine models, the LV/hu-IL-12 transduced human sarcoma produced detectable IL-12 and elicited an IFN-γ inflammatory immune response specific to mature human NK reconstitution in the NSG.Tg(Hu-IL-15) model while restricting tumor growth. We conclude that LV/hu-IL-12 transduction of sarcoma elicits a specific immune reaction and the humanized NSG.Tg(Hu-IL-15) xenograft, with mature human NK cells, can define in vivo anti-tumor effects and systemic toxicities. IL-12 immunomodulation through autologous tumor transduction and reintroduction merits exploration for sarcoma treatment.


Author(s):  
Domenico Mattoscio ◽  
Elisa Isopi ◽  
Alessia Lamolinara ◽  
Sara Patruno ◽  
Alessandro Medda ◽  
...  

Abstract Background Innovative therapies to target tumor-associated neutrophils (PMN) are of clinical interest, since these cells are centrally involved in cancer inflammation and tumor progression. Resolvin D1 (RvD1) is a lipid autacoid that promotes resolution of inflammation by regulating the activity of distinct immune and non-immune cells. Here, using human papilloma virus (HPV) tumorigenesis as a model, we investigated whether RvD1 modulates PMN to reduce tumor progression. Methods Growth-curve assays with multiple cell lines and in vivo grafting of two distinct HPV-positive cells in syngeneic mice were used to determine if RvD1 reduced cancer growth. To investigate if and how RvD1 modulates PMN activities, RNA sequencing and multiplex cytokine ELISA of human PMN in co-culture with HPV-positive cells, coupled with pharmacological depletion of PMN in vivo, were performed. The mouse intratumoral immune cell composition was evaluated through FACS analysis. Growth-curve assays and in vivo pharmacological depletion were used to evaluate anti-tumor activities of human and mouse monocytes, respectively. Bioinformatic analysis of The Cancer Genome Atlas (TCGA) database was exploited to validate experimental findings in patients. Results RvD1 decreased in vitro and in vivo proliferation of human and mouse HPV-positive cancer cells through stimulation of PMN anti-tumor activities. In addition, RvD1 stimulated a PMN-dependent recruitment of classical monocytes as key determinant to reduce tumor growth in vivo. In human in vitro systems, exposure of PMN to RvD1 increased the production of the monocyte chemoattractant protein-1 (MCP-1), and enhanced transmigration of classical monocytes, with potent anti-tumor actions, toward HPV-positive cancer cells. Consistently, mining of immune cells infiltration levels in cervical cancer patients from the TCGA database evidenced an enhanced immune reaction and better clinical outcomes in patients with higher intratumoral monocytes as compared to patients with higher PMN infiltration. Conclusions RvD1 reduces cancer growth by activating PMN anti-cancer activities and encouraging a protective PMN-dependent recruitment of anti-tumor monocytes. These findings demonstrate efficacy of RvD1 as an innovative therapeutic able to stimulate PMN reprogramming to an anti-cancer phenotype that restrains tumor growth.


2004 ◽  
Vol 11 (2) ◽  
pp. 266-271 ◽  
Author(s):  
Guénolée Prioult ◽  
Sophie Pecquet ◽  
Ismail Fliss

ABSTRACT We have previously demonstrated that Lactobacillus paracasei NCC2461 may help to prevent cow's milk allergy in mice by inducing oral tolerance to β-lactoglobulin (BLG). To investigate the mechanisms involved in this beneficial effect, we examined the possibility that L. paracasei induces tolerance by hydrolyzing BLG-derived peptides and liberating peptides that stimulate interleukin-10 (IL-10) production. L. paracasei peptidases have been shown to hydrolyze tryptic-chymotryptic peptides from BLG, releasing numerous small peptides with immunomodulating properties. We have now shown that acidic tryptic-chymotryptic peptides stimulate splenocyte proliferation and gamma interferon (IFN-γ) production in vitro. Hydrolysis of these peptides with L. paracasei peptidases repressed the lymphocyte stimulation, up-regulated IL-10 production, and down-regulated IFN-γ and IL-4 secretion. L. paracasei NCC2461 may therefore induce oral tolerance to BLG in vivo by degrading acidic peptides and releasing immunomodulatory peptides stimulating regulatory T cells, which function as major immunosuppressive agents by secreting IL-10.


Sign in / Sign up

Export Citation Format

Share Document