scholarly journals A Novel Dimeric Melampolide and Further Terpenoids from Smallanthus sonchifolius (Asteraceae) and the Inhibition of the Transcription Factor NF-κB

2007 ◽  
Vol 2 (4) ◽  
pp. 1934578X0700200 ◽  
Author(s):  
Karin Schorr ◽  
Irmgard Merfort ◽  
Fernando B. Da Costa

A novel dimeric melampolide was isolated from the leaf rinse extract of Smallanthus sonchifolius (Poepp. & Endl.) H. Robinson (Asteraceae), an Andean medicinal plant popularly known as yacón. Dimeric sesquiterpene lactones are rare in Asteraceae, especially melampolides. In addition, eight known melampolides and a new ester derivative were also isolated. All compounds were detected in glandular trichomes collected from the leaves and were analysed by HPLC. The anti-inflammatory properties of uvedalin, a known melampolide isolated in this study, were assessed in vitro by analyzing its effect on the DNA binding of the transcription factor NF-κB. These results were compared to those previously reported for the closely related melampolide enhydrin. Our data demonstrated that NF-κB DNA binding was inhibited in leukaemia and macrophage cells at an uvedalin concentration of 2.5 and 5 μM, respectively.

2006 ◽  
Vol 61 (9-10) ◽  
pp. 647-652 ◽  
Author(s):  
Ricardo Stefani ◽  
Karin Schorr ◽  
Juliana Maria Tureta ◽  
Walter Vichnewski ◽  
Irmgard Merfort ◽  
...  

AbstractTwo Brazilian species of Dimerostemma (Asteraceae) were chemically investigated. Two known sesquiterpene lactones (STLs), a germacrolide and an eudesmanolide, were isolated from D. episcopale while D. brasilianum afforded the new germacranolide 1β,5β,10α-trihydroxy- 8α-angeloyloxy-germacra-3,11(13)-dien-6α,12-olide in addition to a known one. Structure identification based on NMR and MS analyses. 1β,10α,4α,5β-Diepoxy-8α-angeloyloxycostunolide isolated from D. brasilianum was studied for its anti-inflammatory activity. This STL completely inhibited DNA binding of the transcription factor NF-κB at a concentration of 5 μм and 10 μм in Jurkat T and Raw 264.7 cells, respectively. Elastase release from human neutrophils was reduced to 50% at a concentrations of 23 μм after stimulation with PAF and of 27 μм after stimulation with fMLP without showing cytotoxic effects. Additionally, elastase was also directly inhibited.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1343
Author(s):  
Balaji Venkataraman ◽  
Saeeda Almarzooqi ◽  
Vishnu Raj ◽  
Abdullah T. Alhassani ◽  
Ahmad S. Alhassani ◽  
...  

Inflammatory bowel diseases (IBD) are chronic inflammatory disorders with increasing incidence and prevalence worldwide. Here, we investigated thymoquinone (TQ), a naturally occurring phytochemical present in Nigella sativa, for anti-inflammatory effects in colonic inflammation. To address this, we used in vivo (mice) and in vitro (HT-29 cells) models in this investigation. Our results showed that TQ treatment significantly reduced the disease activity index (DAI), myeloperoxidase (MPO) activity, and protected colon microscopic architecture. In addition, TQ also reduced the expression of proinflammatory cytokines and mediators at both the mRNA and protein levels. Further, TQ decreased phosphorylation of the activated mitogen-activated protein kinase (MAPK) signaling pathway and nuclear factor kappa B (NF-κB) proteins and enhanced colon epithelial PPAR-γ transcription factor expression. TQ significantly decreased proinflammatory chemokines (CXCL-1 and IL-8), and mediator (COX-2) mRNA expression in HT-29 cells treated with TNF-α. TQ also increased HT-29 PPAR-γ mRNA, PPAR-γ protein expression, and PPAR-γ promoter activity. These results indicate that TQ inhibits MAPK and NF-κB signaling pathways and transcriptionally regulates PPAR-γ expression to induce potent anti-inflammatory activity in vivo and in vitro models of colon inflammation.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 991
Author(s):  
Melanie S. Matos ◽  
José D. Anastácio ◽  
Cláudia Nunes dos Santos

Inflammation is a crucial and complex process that reestablishes the physiological state after a noxious stimulus. In pathological conditions the inflammatory state may persist, leading to chronic inflammation and causing tissue damage. Sesquiterpene lactones (SLs) are composed of a large and diverse group of highly bioactive plant secondary metabolites, characterized by a 15-carbon backbone structure. In recent years, the interest in SLs has risen due to their vast array of biological activities beneficial for human health. The anti-inflammatory potential of these compounds results from their ability to target and inhibit various key pro-inflammatory molecules enrolled in diverse inflammatory pathways, and prevent or reduce the inflammatory damage on tissues. Research on the anti-inflammatory mechanisms of SLs has thrived over the last years, and numerous compounds from diverse plants have been studied, using in silico, in vitro, and in vivo assays. Besides their anti-inflammatory potential, their cytotoxicity, structure–activity relationships, and pharmacokinetics have been investigated. This review aims to gather the most relevant results and insights concerning the anti-inflammatory potential of SL-rich extracts and pure SLs, focusing on their effects in different inflammatory pathways and on different molecular players.


2018 ◽  
Vol 39 (3) ◽  
Author(s):  
Kyle T. Helzer ◽  
Mary Szatkowski Ozers ◽  
Mark B. Meyer ◽  
Nancy A. Benkusky ◽  
Natalia Solodin ◽  
...  

ABSTRACT Posttranslational modifications are key regulators of protein function, providing cues that can alter protein interactions and cellular location. Phosphorylation of estrogen receptor α (ER) at serine 118 (pS118-ER) occurs in response to multiple stimuli and is involved in modulating ER-dependent gene transcription. While the cistrome of ER is well established, surprisingly little is understood about how phosphorylation impacts ER-DNA binding activity. To define the pS118-ER cistrome, chromatin immunoprecipitation sequencing was performed on pS118-ER and ER in MCF-7 cells treated with estrogen. pS118-ER occupied a subset of ER binding sites which were associated with an active enhancer mark, acetylated H3K27. Unlike ER, pS118-ER sites were enriched in GRHL2 DNA binding motifs, and estrogen treatment increased GRHL2 recruitment to sites occupied by pS118-ER. Additionally, pS118-ER occupancy sites showed greater enrichment of full-length estrogen response elements relative to ER sites. In an in vitro DNA binding array of genomic binding sites, pS118-ER was more commonly associated with direct DNA binding events than indirect binding events. These results indicate that phosphorylation of ER at serine 118 promotes direct DNA binding at active enhancers and is a distinguishing mark for associated transcription factor complexes on chromatin.


1998 ◽  
Vol 18 (10) ◽  
pp. 5670-5677 ◽  
Author(s):  
Ossama Abu Hatoum ◽  
Shlomit Gross-Mesilaty ◽  
Kristin Breitschopf ◽  
Aviad Hoffman ◽  
Hedva Gonen ◽  
...  

ABSTRACT MyoD is a tissue-specific transcriptional activator that acts as a master switch for skeletal muscle differentiation. Its activity is induced during the transition from proliferating, nondifferentiated myoblasts to resting, well-differentiated myotubes. Like many other transcriptional regulators, it is a short-lived protein; however, the targeting proteolytic pathway and the underlying regulatory mechanisms involved in the process have remained obscure. It has recently been shown that many short-lived regulatory proteins are degraded by the ubiquitin system. Degradation of a protein by the ubiquitin system proceeds via two distinct and successive steps, conjugation of multiple molecules of ubiquitin to the target protein and degradation of the tagged substrate by the 26S proteasome. Here we show that MyoD is degraded by the ubiquitin system both in vivo and in vitro. In intact cells, the degradation is inhibited by lactacystin, a specific inhibitor of the 26S proteasome. Inhibition is accompanied by accumulation of high-molecular-mass MyoD-ubiquitin conjugates. In a cell-free system, the proteolytic process requires both ATP and ubiquitin and, like the in vivo process, is preceded by formation of ubiquitin conjugates of the transcription factor. Interestingly, the process is inhibited by the specific DNA sequence to which MyoD binds: conjugation and degradation of a MyoD mutant protein which lacks the DNA-binding domain are not inhibited. The inhibitory effect of the DNA requires the formation of a complex between the DNA and the MyoD protein. Id1, which inhibits the binding of MyoD complexes to DNA, abrogates the effect of DNA on stabilization of the protein.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3910 ◽  
Author(s):  
Min-Seon Kim ◽  
Jin-Soo Park ◽  
You Chul Chung ◽  
Sungchan Jang ◽  
Chang-Gu Hyun ◽  
...  

Biorenovation is a microbial enzyme-catalyzed structural modification of organic compounds with the potential benefits of reduced toxicity and improved biological properties relative to their precursor compounds. In this study, we synthesized a novel compound verified as formononetin 7-O-phosphate (FMP) from formononetin (FM) using microbial biotransformation. We further compared the anti-inflammatory properties of FMP to FM in lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells. We observed that cell viabilities and inhibitory effects on LPS-induced nitric oxide (NO) production were greater in FMP-treated RAW 264.7 cells than in their FM-treated counterparts. In addition, FMP treatment suppressed the production of proinflammatory cytokines such as prostaglandin-E2 (PGE2), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner and concomitantly decreased the mRNA expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). We also found that FMP exerted its anti-inflammatory effects through the downregulation of the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor kappa B (NF-κB) signaling pathways. In conclusion, we generated a novel anti-inflammatory compound using biorenovation and demonstrated its efficacy in cell-based in vitro assays.


2005 ◽  
Vol 25 (24) ◽  
pp. 11059-11072 ◽  
Author(s):  
Marta Hristova ◽  
Darcy Birse ◽  
Yang Hong ◽  
Victor Ambros

ABSTRACT A temporal gradient of the novel nuclear protein LIN-14 specifies the timing and sequence of stage-specific developmental events in Caenorhabditis elegans. The profound effects of lin-14 mutations on worm development suggest that LIN-14 directly or indirectly regulates stage-specific gene expression. We show that LIN-14 can associate with chromatin in vivo and has in vitro DNA binding activity. A bacterially expressed C-terminal domain of LIN-14 was used to select DNA sequences that contain a putative consensus binding site from a pool of randomized double-stranded oligonucleotides. To identify candidates for genes directly regulated by lin-14, we employed DNA microarray hybridization to compare the mRNA abundance of C. elegans genes in wild-type animals to that in mutants with reduced or elevated lin-14 activity. Five of the candidate LIN-14 target genes identified by microarrays, including the insulin/insulin-like growth factor family gene ins-33, contain putative LIN-14 consensus sites in their upstream DNA sequences. Genetic analysis indicates that the developmental regulation of ins-33 mRNA involves the stage-specific repression of ins-33 transcription by LIN-14 via sequence-specific DNA binding. These results reinforce the conclusion that lin-14 encodes a novel class of transcription factor.


2004 ◽  
Vol 286 (6) ◽  
pp. L1319-L1327 ◽  
Author(s):  
Frank Antonicelli ◽  
David Brown ◽  
Maryline Parmentier ◽  
Ellen M. Drost ◽  
Nik Hirani ◽  
...  

Increased levels of proinflammatory cytokines are present in bronchoalveolar lavage fluid in various lung diseases. Redox-sensitive transcription factors such as NF-κB regulate gene transcription for these cytokines. We therefore studied the effect of a new thiol antioxidant compound, Nacystelyn (NAL), on IL-8 regulation in a human macrophage-derived cell line (THP-1). LPS (10 μg/ml) increased IL-8 release compared with control levels. This LPS activation was inhibited by coincubation with NAL (1 and 5 mM). Pretreatment with cycloheximide or okadaic acid, protein synthesis, and serine/threonine phosphatase inhibitors, respectively, did not modify inhibition of IL-8 release caused by NAL. NF-κB and C/EBP DNA binding were increased after LPS treatment compared with control, an effect inhibited by cotreatment with NAL. Activator protein (AP)-1 DNA binding was unaffected. The enhanced neutrophil chemotaxis produced by conditioned media from LPS-treated cells was inhibited when cells were cotreated with NAL. The selectivity of NAL inhibition upon IL-8 expression was studied. LPS-treated THP-1 cells also had higher levels of TNF-α, transforming growth factor (TGF)-β1 and -3, MIP-1α and -β, and RANTES gene expression. However, only LPS-induced IL-8 and TGF-β1 expressions were inhibited by NAL. An anti-inflammatory effect of NAL was confirmed in vivo as shown by a reduction in LPS-induced neutrophil recruitment to the lungs following instillation of NAL into the lungs. Our studies demonstrate that NAL has anti-inflammatory properties in vitro and in vivo, may therefore have a therapeutic role in lung inflammation, and has the advantage over other antioxidant agents in that it may be administrated by inhalation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3403-3403
Author(s):  
Xinyang Zhao ◽  
Ly P. Vu ◽  
Fabiana Perna ◽  
Fan Liu ◽  
Hao Xu ◽  
...  

Abstract Abstract 3403 RUNX1 is a transcription factor that is required for definitive hematopoietic development, and helps regulate long term hematopoietic stem cell self-renewal, platelet production, and lymphocyte development during adult hematopoiesis. RUNX1 is known to be modified via phosphorylation, acetylation, ubiquitination and methylation, for example on R208 and R210 by PRMT1, which activates its activating function. We continue to investigate how the methylation of RUNX1 by other protein arginine methyl transferases (PRMTs) regulates its function. Loop 9 of the DNA binding domain (the Runt domain) of RUNX1 contains an SGRGK sequence that is also present on the tails of histone H2A and H4. The histone tails of H4 and H2A can be methylated by a purified PRMT5 complex in vitro. An enzymatically active in vitro PRMT5 complex capable of methylating histones and SM proteins requires two subunits: both PRMT5 and MEP50, a WD 40 repeat domain protein. Nevertheless, this purified PRMT5/MEP50 complex cannot methylate the DNA binding domain of the RUNX1 protein in vitro. We show that RUNX1 also can be symmetrically methylated at R142 within the SGRGK motif in vitro by a nuclear PRMT5/MEP50 complex which also contains COPR5. We show after RUNX1 is methylated on R142 within the nucleus of HEL cells, RUNX1 is exported to the cytoplasm in a CRM1 dependent manner, as the export of methylated RUNX1 is blocked by lemptomycin B. CRM1 interacts with PRMT5, supporting that PRMT5 mediated arginine methylation tags protein for nuclear export. Therefore, PRMT5 not only involves in epigenetic regulation by methylation of histones but also it can directly controls the level of transcription factor proteins within the nucleus. Polycytocemia Vera patients who express the Jak2V617F mutation have low PRMT5 activity due to JAK2V617F mediated PRMT5 phosphorylation (Liu et al 2011). How Jak2 signaling affects RUNX1 methylation and RUNX1 localization within the nucleus is still under investigation. By controlling the amount of RUNX1 available within the cell nucleus, PRMT5 may regulate lineage differentiation potential and growth potential of hematopoietic stem and progenitor cells. The nuclear localization of RUNX1 can be changed through post translational modification such as arginine methylation in addition to point mutations and translocations involving RUNX1 found patients with leukemia and pre-leukemic diseases. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 15 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Ala’a Al-Bakheit ◽  
Saeid Abu-Romman ◽  
Ahmad Sharab ◽  
Mohammad Al Shhab

Varthemia iphionoides is a Jordanian medicinal plant with several health-promoting properties, including antibacterial, antioxidant and anticancer activities. However, its anti-inflammatory properties have been poorly investigated up to date. The current study aimed to investigate the anti-inflammatory effect of V. iphionoides by measuring the production of interleukin-6 in response to a pro-inflammatory stimulus (bacterial lipopolysaccharide) in in vitro cell models of human MRC-5 and PC3 cells. We observed a significant reduction in lipopolysaccharide-induced interleukin-6 release in response to V. iphionoides (125 µg/mL) in both non-cancerous fibroblast MRC-5 and prostate cancerous PC3 cells. However, the anti-inflammatory effect of this medicinal plant was stronger when MRC-5 cells were treated with an aqueous extract, while the methanolic extract was more potent in PC3 cells. The effect of V. iphionoides in reducing interleukin-6 production was not due to its cytotoxicity, and future studies are required to elucidate the mechanisms of action by which this medicinal plant modulates inflammatory responses. In conclusion, the results of our study represent the first report of the potential protective effect of water and methanolic extracts of V. iphionoides against pro-inflammatory stimuli in fibroblasts and cancer cells of human origin, and it is critically important to identify the phytochemical compounds responsible for this effect.


Sign in / Sign up

Export Citation Format

Share Document