scholarly journals The examination of vegetable- and mineral oil-based inks’ effects on print quality: Green printing effects with different oils

2018 ◽  
Vol 16 (3) ◽  
pp. 137-143 ◽  
Author(s):  
Cem Aydemir ◽  
Semiha Yenidoğan ◽  
Arif Karademir ◽  
Emine Arman Kandirmaz

Introduction: Printing inks oil selection is related to the desired nature of the varnish in the ink production. Petroleum-derived mineral oils and vegetable oils can be used in offset inks. Methods: In this study, the behaviors of vegetable- and mineral oil-based inks on uncoated and coated paper surfaces were investigated in terms of printability. Solid tone test prints were done with offset printing of these inks. Print gloss of the printed samples was measured and a light fastness test was implemented on these samples in order to determine the resistance to fading. Absorption behavior and contact angles of the ink-printed films on the test papers were measured with the sessile water drop method depending on time, and surface energies were calculated. Results: On both paper types, linseed–soybean oil-based vegetable ink gave the highest brightness value. The lowest print gloss results on the paper were obtained from soybean oil-based inks. The lowest color change was recorded with mineral oil-based inks on gloss-coated papers. According to the ink-film–surface relation, when the contact angle is high, surface energy decreases and the absorbency of the ink-film is lower. Conclusions: In this study, the behaviors of vegetable- and mineral oil-based inks on different paper surfaces, and the effect on the quality of printability as well as differences, have been evaluated, taking environmental and health factors into consideration.

2021 ◽  
Vol 55 (1-2) ◽  
pp. 133-139
Author(s):  
CEM AYDEMIR ◽  
NEMANJA KAŠIKOVIC ◽  
CSABA HORVATH ◽  
STEFAN DURDEVIC

"Printability is a combination of paper-related factors that contribute to achieving the desired print quality level and relates to the paper's ability to absorb ink. An important property of ink on paper is its setting behavior. The spread and placement of the ink on the paper surface is affected by the surface structure of the paper. The surface topography of the paper is decisive in the process of ink placement on the paper surface. In this study, the effects of surface roughness of the paper on wettability, print gloss, ink color change and light fastness change were investigated. For this purpose, prints on papers with different surface roughness were made in accordance with ISO 12647-2 with Cyan color ink in accordance with DIN ISO 2846-1. The CIE L*a*b* and gloss values of the test prints, which were allowed to dry in order to detect color and print gloss differences on the paper surfaces, were measured periodically until the ink film was completely dry. In addition, the effects of the paper surface on the light fastness of the ink were measured and recorded. The results were discussed in terms of print quality. "


2021 ◽  
Vol 11 (17) ◽  
pp. 8245
Author(s):  
Joanna Izdebska-Podsiadły

PLA films, as non-absorbent materials, require modification of the surface before the printing process in order to improve the wettability of the substrate and to obtain proper ink adhesion to the substrate. In this paper, the surfaces of two kinds of PLA films were modified using plasma activation with parameters enabling high surface free energy (SFE) values, and then the films were printed on using different kinds of flexographic inks. Two gases, oxygen and argon, were used for activation, as these make it possible to obtain good hydrophilicity and high SFE values while having different effects on the roughness, or the degree of surface etching. Plasma-activated films were subsequently subjected to the measurements of: contact angle with water, diiodomethane and three printing inks, roughness, weight change, strength properties, color and gloss change, and SFE was determined. Unmodified and activated films were flexographically printed in laboratory conditions and then the quality of obtained prints was analyzed. The results showed a strong effect of activation with both oxygen and argon plasma on the SFE value of the films and the contact angles of water and inks, with the gas used for plasma activation and the type of film significantly influencing the thickness of the fused ink layer and the resultant color. Moreover, plasma activation had a especially favorable and significant effect on the quality of prints made with water-based inks, while it had little effect when printing with solvent-based inks.


2016 ◽  
Vol 23 (5) ◽  
pp. 565-571 ◽  
Author(s):  
Cem Aydemir

AbstractRecycled handsheets were prepared from old newspapers and old office papers with internal sizing applications of alkyl ketene dimer (AKD) emulsion at 0.5%, 1.0% and 1.5% addition levels as received basis. Handsheets made at 80 g/m2 were air dried and oven dried as placed in drying rings followed by conditioning prior to testing. The contact angle, surface energy and drop volume changes of handsheets were carefully measured as well as used some offset printing applications. Freeness levels of pulp from newspapers and office papers were measured to be 65 and 45 SR°, respectively. It was confirmed that AKD sizing improved paper resistance against water and printing ink, and this was further improved with oven drying. Contact angle values obtained from oven-dried office papers and newspapers were in the range of 105°–95° and 85°–75°, respectively. Without drying, lowest contact angles from newspapers and office papers were recorded to be around 72° and 37°, respectively. Results were in agreement with surface energy values of samples which were around 60 mJ/m2 for air-dried samples and over 30 mJ/m2 for oven-dried handsheets. It was concluded that sizing actually improves print quality but may also increase colour change differences over time as represented by ΔE.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (4) ◽  
pp. 253-262 ◽  
Author(s):  
ERIK BOHLIN ◽  
CAISA JOHANNSON ◽  
MAGNUS LESTELIUS

The effect of coating structure variations on flexographic print quality was studied using pilot-coated paperboard samples with different latex content and latex particle sizes. Two latexes, with particle sizes of 120 nm and 160 nm, were added at either 12 parts per hundred (pph) or 18 pph to the coating formulation. The samples were printed with full tone areas at print forces of 25 N and 50 N in a laboratory flexographic printing press using a waterbased ink. A high ratio of uncovered areas (UCAs) could be detected for the samples that contained 18 pph latex printed at a print force of 25 N. UCAs decreased with increased print force and with decreased amounts of latex in the coating formulation. The fraction of latex covered area on the coating surface was estimated to be 0.35–0.40 for the 12 pph, and 0.70–0.75 for the 18 pph samples. The ink penetration depth into the coating layer could be linked to the fraction of latex-free areas on the coating surface. Optical cross section microscopy indicated that a higher printing force did not increase the depth of penetrated ink to any greater extent. Higher printing force did increase contact between plate and substrate, leading to an improved distribution of the ink. This, in turn, increased print density and decreased UCAs. On closer inspection, the UCAs could be categorized as being induced by steep topographic changes. When appearing at other locations, they were more likely to be caused by poor wetting of the surface. To understand the wetting behavior of the coating surface, observed contact angles were compared with calculated contact angles on surfaces of mixed composition.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (10) ◽  
pp. 7-15
Author(s):  
HANNA KOIVULA ◽  
DOUGLAS BOUSFIELD ◽  
MARTTI TOIVAKKA

In the offset printing process, ink film splitting has an important impact on formation of ink filaments. The filament size and its distribution influence the leveling of ink and hence affect ink setting and the print quality. However, ink filaments are difficult to image due to their short lifetime and fine length scale. Due to this difficulty, limited work has been reported on the parameters that influence filament size and methods to characterize it. We imaged ink filament remains and quantified some of their characteristics by changing printing speed, ink amount, and fountain solution type. Printed samples were prepared using a laboratory printability tester with varying ink levels and operating settings. Rhodamine B dye was incorporated into fountain solutions to aid in the detection of the filaments. The prints were then imaged with a confocal laser scanning microscope (CLSM) and images were further analyzed for their surface topography. Modeling of the pressure pulses in the printing nip was included to better understand the mechanism of filament formation and the origin of filament length scale. Printing speed and ink amount changed the size distribution of the observed filament remains. There was no significant difference between fountain solutions with or without isopropyl alcohol on the observed patterns of the filament remains.


2018 ◽  
Author(s):  
Jordan T. Sutton ◽  
Kalavathy Rajan ◽  
David P. Harper ◽  
Stephen Chmely

Generating compatible and competitive materials that are environmentally sustainable and economically viable is paramount for the success of additive manufacturing using renewable materials. We report the successful application of renewable, modified lignin-containing photopolymer resins in a commercial stereolithography system. Resins were fabricated within operable ranges for viscosity and cure properties, using up to 15% modified lignin by weight with the potential for higher amounts. A four-fold increase in ductility in cured parts with higher lignin concentration is noted as compared to commercial SLA resins. Excellent print quality was seen in modified lignin resins, with good layer fusion, high surface definition, and visual clarity. These materials can be used to generate new products for additive manufacturing applications and help fill vacant material property spaces, where ductility, sustainability, and application costs are critical.


2018 ◽  
Author(s):  
Jordan T. Sutton ◽  
Kalavathy Rajan ◽  
David P. Harper ◽  
Stephen Chmely

Generating compatible and competitive materials that are environmentally sustainable and economically viable is paramount for the success of additive manufacturing using renewable materials. We report the successful application of renewable, modified lignin-containing photopolymer resins in a commercial stereolithography system. Resins were fabricated within operable ranges for viscosity and cure properties, using up to 15% modified lignin by weight with the potential for higher amounts. A four-fold increase in ductility in cured parts with higher lignin concentration is noted as compared to commercial SLA resins. Excellent print quality was seen in modified lignin resins, with good layer fusion, high surface definition, and visual clarity. These materials can be used to generate new products for additive manufacturing applications and help fill vacant material property spaces, where ductility, sustainability, and application costs are critical.


2021 ◽  
pp. 009524432110290
Author(s):  
Leandro Hernán Esposito ◽  
Angel José Marzocca

The potential replacement of a treated residual aromatic extract mineral oil (TRAE) by a highly epoxidized soybean oil (ESO) into a silica-filled styrene-butadiene rubber compound was investigated. In order to determine if ESO compounds performance are suitable for tread tire applications, processing properties cure and characteristics were evaluated. The impact of ESO amount on the silica dispersion was confirmed by Payne Effect. The presence of chemical or physical interactions between ESO and silica improves the filler dispersion, enabling the compound processability and affecting the cure kinetic rate. An adjusted rubber compound with 2 phr of ESO and 2 phr of sulfur presented the higher stiffness and strength values with lower weight loss from a wear test compared with TRAE compound at an equal amount of oil and curing package. Furthermore, wet grip and rolling resistance predictors of both compounds gave comparable results, maintaining a better performance and reducing the dependence of mineral oil for tire tread compounds.


2016 ◽  
Vol 64 (2) ◽  
pp. 111-120 ◽  
Author(s):  
Miroslav Fér ◽  
Martin Leue ◽  
Radka Kodešová ◽  
Horst H. Gerke ◽  
Ruth H. Ellerbrock

Abstract The organo-mineral coatings of soil aggregates, cracks, and biopores control sorption and macropore-matrix exchange during preferential flow, in particular in the clay-illuvial Bt-horizon of Luvisols. The soil organic matter (SOM) composition has been hypothesized to explain temporal changes in the hydraulic properties of aggregate surfaces. The objective of this research was to find relations between the temporal change in wettability, in terms of droplet infiltration dynamics, and the SOM composition of coated and uncoated aggregate surfaces. We used 20 to 40 mm sized soil aggregates from the Bt2 horizon of a Haplic Luvisol from loess that were (i) coated, (ii) not coated (both intact), and (iii) aggregates from which coatings were removed (cut). The SOM composition of the aggregate surfaces was characterized by infrared spectroscopy in the diffuse reflection mode (DRIFT). A potential wettability index (PWI) was calculated from the ratio of hydrophobic and hydrophilic functional groups in SOM. The water drop penetration times (WDPT) and contact angles (CA) during droplet infiltration experiments were determined on dry and moist aggregate samples of the three types. The decrease in the CA with time was described using the power function (CA(t) = at−b). For dry aggregates, the WDPT values were larger for coated as compared to uncoated regions on the aggregate surfaces, and increased with increasing PWI value (R2 = 0.75). The a parameter was significantly related to the WDPT (R2 = 0.84) and to the PWI (R2 = 0.64). The relations between the b parameter and the WDPT (R2 = 0.61) and the PWI (R2 = 0.53) were also significant. The WDPT values of wet soil aggregates were higher than those of dry aggregates due to high water contents, which limited the droplet infiltration potential. At the wet aggregate surfaces, the WDPT values increased with the PWI of the SOM (R2 = 0.64). In contrast to dry samples, no significant relationships were found between parameters a or b of CA(t) and WDPT or PWI for wet aggregate surfaces. The results suggest that the effect of the SOM composition of coatings on surface wettability decreases with increasing soil moisture. In addition to the dominant impact of SOM, the wettability of aggregate surfaces could be affected by different mineralogical compositions of clay in coatings and interiors of aggregates. Particularly, wettability of coatings could be decreased by illite which was the dominant clay type in coatings. However, the influence of different clay mineral fractions on surface wettability was not due to small number of measurements (2 and 1 samples from coatings and interiors, respectively) quantified.


2018 ◽  
Vol 33 (1) ◽  
pp. 150-163 ◽  
Author(s):  
Sofia Thorman ◽  
Göran Ström ◽  
Patrick A. C. Gane

Abstract Print mottle is a serious and yet common print defect in offset printing. An imbalance between the feed of fountain solution and the ability of the paper substrate to absorb and transport this water away from the surface can cause moisture/water interference problems. In the study presented here, we have investigated the uniformity of aqueous absorption and coating structure of pilot-coated papers with different types and dosages of dispersants and linked this to print mottle and uncovered areas (UCA). In earlier studies, the print quality of these papers indicated that a moderate addition of excess dispersant caused ink refusal, ink-lift-off (ink-surface adhesion failure) and water-interference mottle when printing at elevated fountain feed. In the present study, we have shown that a majority of the samples with uneven water/moisture absorption and an uneven burn-out reflectance tended to have more severe printing problems related to surface-moisture/water.An aqueous staining technique was used to characterise the absorption non-uniformities. This method has been developed previously with focus on absorption of flexographic water-based inks but can clearly give relevant information also for offset printing, when it comes to moisture/water interference mottle.


Sign in / Sign up

Export Citation Format

Share Document