scholarly journals Adult, but Not Neonatal, Platelet Transfusions Drive a Monocyte Trafficking Phenotype in Vitro and In Vivo

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2144-2144
Author(s):  
Preeti Maurya ◽  
Sara Ture ◽  
Kathleen E. McGrath ◽  
James Palis ◽  
Craig N. Morrell

Abstract Although, thrombocytopenia can affect all age groups, neonates, especially pre-term, have an increased incidence of thrombocytopenia. Platelet transfusions may reduce the bleeding risk in neonates, but are also associated with adverse short and long-term immune and inflammatory outcomes. A randomized trial of platelet transfusions in neonates found that transfusion was associated with an increased risk of necrotizing enterocolitis, unilateral/bilateral retinopathy, and bronchopulmonary dysplasia. Past work from our research team found that neonatal platelets expressed lower levels of mRNA for many immune related molecules compared to adult platelets. We therefore sought to determine whether the transfusion of adult platelets to neonates resulted in developmental immune dysregulation, with a focus on platelet and monocyte interactions. To explore the interactions between monocytes and platelets, we isolated monocytes from adult mouse bone marrow and co-incubated monocytes with adult (>8 weeks old) or neonatal mouse platelets (7 days old mice) and determined inflammatory and trafficking monocyte phenotypes by flow cytometry and qRT-PCR. Monocytes treated with adult platelets had an increased inflammatory (Ly6C hi) and trafficking phenotype (CCR2 hi), while monocytes treated with neonatal platelets adopted an inflammatory, but not trafficking phenotype. As expected, adult platelets increased the expression of monocyte inflammatory (Nos2, Cxcl1, Ccl2) and trafficking (Ccr2) mRNA, while neonatal platelets also increased inflammatory mRNA expression, but did not increase Ccr2 expression. Adult platelets express more Selp (P-selectin) than neonatal platelets and P-selectin is a major mediator of platelet and monocyte interactions. We confirmed that adult platelets expressed more P-selectin protein compared to neonatal platelets, and found that blocking P-selectin decreased adult platelet induced CCR2 expression to levels similar to monocytes treated with neonatal platelets. Using a transwell chamber we assessed adult and neonatal platelet effects on monocyte migration towards the CCR2 ligand CCL2. Monocytes were treated with adult platelets had significantly greater monocyte migration compared to monocytes co-incubated with neonatal platelets. To model platelet transfusions in the setting of thrombocytopenia, we used 14d old thrombopoietin receptor knockout mice (TPOR -/-) that have low platelet counts, and infused adult or neonatal platelets. We observed a significant increase in inflammatory and trafficking monocytes in mice transfused with adult platelets compared to those transfused with neonatal platelets. Using an in vivo model of monocyte chemotaxis, mice were treated with CCL2 intraperitoneal after platelet transfusion. Adult platelet transfusions, but not neonatal, increased monocyte peritoneal trafficking to CCL2. These data provide comparative insights as to how adult and neonatal platelet transfusions regulate monocyte functions. Adult platelet transfusions to neonates are associated with an inflammatory and trafficking monocyte phenotype that is platelet P-selectin dependent and may have a major impact on neonatal platelet transfusion complications. Disclosures Palis: Rubius Therapeutics: Consultancy.

2013 ◽  
Vol 6 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Tamanna Jahangir ◽  
Mohammed M. Safhi ◽  
Sarwat Sultana ◽  
Sayeed Ahmad

Abstract Evidence from epidemiological, experimental and clinical trial data indicates that a plant based diet can reduce the risk of chronic diseases and reduces toxic effects. In the present study, we report the antioxidant and anticlastogenic activity of Pluchea lanceolata (PL), an important medicinal plant, in both in vitro and in vivo model. Benzo(a)pyrene (B(a)P) administration leads to depletion of renal glutathione and its metabolizing enzymes. Pretreatment with PL (100 and 200 mg /kg b.wt) restored renal glutathione content and its dependent enzymes significantly (p<0.001) with simultaneous increase in catalase(CAT), quinone reductase(QR) in mouse kidney. Prophylactic administration of PL prior to B (a) P administration significantly decreased the malondialdehyde(MDA), H2O2 and xanthineoxidase (XO) levels at a significance of p<0.001, at both the doses. PL extract pretreated groups showed marked inhibition in B(a)P induced micronuclei formation in mouse bone marrow cells with simultaneous restoration of DNA integrity, viz. alkaline unwinding assay and DNA damage shown by gel-electrophoresis. HPTLC confirms the presence of quercetin in plant extract which could be responsible for PL protecting efficacy. In conclusion, the present findings strongly support the antioxidant efficacy of PL, possibly by modulation of antioxidant armory.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Junior Univers ◽  
Brian M Freeman ◽  
Deidra J Mountain ◽  
Stacy S Kirkpatrick ◽  
Joshua D Arnold ◽  
...  

Objectives: Androgen deficiency (AD) is associated with increased risk of cardio- and peripheral vascular disease, yet the underlying biochemical mechanisms remain unclear. Systemically testosterone (TST) is enzymatically reduced to its more potent metabolite dihydrotestosterone (DHT) or is aromatized to estradiol, which differentially stimulate androgen and estrogen receptor-mediated pathways, respectively. We have previously demonstrated an inverse relationship between TST levels and the cellular processes of intimal hyperplasia (IH) in vitro. Here we investigated TST and DHT replacement in the attenuation of IH in an in vivo model of AD. Methods: Sub- to high physiologic levels of TST or DHT was administered via pellet implants in aged orchiectomized rats (0.5-5mg). Young intact (YI), aged intact (AI), and orchiectomized placebo (Plac) rats served as controls. After 14d hormone replacement rats underwent balloon angioplasty of the left common carotid. 14d post-injury animals were euthanized, systemic hormone levels were determined by ELISA and comparative weight analysis of androgen sensitive organs (Table 1), and carotid intima:media (I:M) was quantified. Results: I:M was decreased in AI animals and with higher physiological TST replacement compared to YI controls (Fig 1). I:M was higher in Plac, sub- and low-physiological TST animals and at all DHT levels. Conclusions: Aging and the normal reduction of TST was protective against IH when compared to young animals. However, pathological AD and sub-physiological hormone replacement increased IH. While physiological TST replacement attenuated this effect, equivalent DHT replacement was not protective, but instead exacerbated the hyperplastic response. Future studies will investigate if the protective effect of physiological TST replacement could be via its conversion to estradiol and downstream estrogen receptor signaling and if estrogen therapy attenuates IH in AD males.


2019 ◽  
Vol 20 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Abdullah M. Alnuqaydan ◽  
Bilal Rah

Background:Tamarix Articulata (T. articulata), commonly known as Tamarisk or Athal in Arabic region, belongs to the Tamaricaece species. It is an important halophytic medicinal plant and a good source of polyphenolic phytochemical(s). In traditional medicines, T. articulata extract is commonly used, either singly or in combination with other plant extracts against different ailments since ancient times.Methods:Electronic database survey via Pubmed, Google Scholar, Researchgate, Scopus and Science Direct were used to review the scientific inputs until October 2018, by searching appropriate keywords. Literature related to pharmacological activities of T. articulata, Tamarix species, phytochemical analysis of T. articulata, biological activities of T. articulata extracts. All of these terms were used to search the scientific literature associated with T. articulata; the dosage of extract, route of administration, extract type, and in-vitro and in-vivo model.Results:Numerous reports revealed that T. articulata contains a wide spectrum of phytochemical(s), which enables it to have a wide window of biological properties. Owing to the presence of high content of phytochemical compounds like polyphenolics and flavonoids, T. articulata is a potential source of antioxidant, anti-inflammatory and antiproliferative properties. In view of these pharmacological properties, T. articulata could be a potential drug candidate to treat various clinical conditions including cancer in the near future.Conclusion:In this review, the spectrum of phytochemical(s) has been summarized for their pharmacological properties and the mechanisms of action, and the possible potential therapeutic applications of this plant against various diseases discussed.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1424
Author(s):  
Seyeon Oh ◽  
Myeongjoo Son ◽  
Joonhong Park ◽  
Donghwan Kang ◽  
Kyunghee Byun

Rosacea is a skin inflammatory condition that is accompanied by not only redness and flushing but also unseen symptoms, such as burning, stinging, and itching. TRPV1 expression in UVB-exposed skin can lead to a painful burning sensation. Upregulated TRPV1 expression helps release neuropeptides, including calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide, and vasoactive intestinal peptide, which can activate macrophage and inflammatory molecules. In this study, we found that radiofrequency (RF) irradiation reduced TRPV1 activation and neuropeptide expression in a UVB-exposed in vivo model and UVB- or heat-treated in an in vitro model. RF irradiation attenuated neuropeptide-induced macrophage activation and inflammatory molecule expression. Interestingly, the burning sensation in the skin of UVB-exposed mice and patients with rosacea was significantly decreased by RF irradiation. These results can provide experimental and molecular evidence on the effective use of RF irradiation for the burning sensation in patients with rosacea.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jennifer K. Dowling ◽  
Remsha Afzal ◽  
Linden J. Gearing ◽  
Mariana P. Cervantes-Silva ◽  
Stephanie Annett ◽  
...  

AbstractMitochondria are important regulators of macrophage polarisation. Here, we show that arginase-2 (Arg2) is a microRNA-155 (miR-155) and interleukin-10 (IL-10) regulated protein localized at the mitochondria in inflammatory macrophages, and is critical for IL-10-induced modulation of mitochondrial dynamics and oxidative respiration. Mechanistically, the catalytic activity and presence of Arg2 at the mitochondria is crucial for oxidative phosphorylation. We further show that Arg2 mediates this process by increasing the activity of complex II (succinate dehydrogenase). Moreover, Arg2 is essential for IL-10-mediated downregulation of the inflammatory mediators succinate, hypoxia inducible factor 1α (HIF-1α) and IL-1β in vitro. Accordingly, HIF-1α and IL-1β are highly expressed in an LPS-induced in vivo model of acute inflammation using Arg2−/− mice. These findings shed light on a new arm of IL-10-mediated metabolic regulation, working to resolve the inflammatory status of the cell.


2020 ◽  
Vol 22 (1) ◽  
pp. 233
Author(s):  
Eunkuk Park ◽  
Chang Gun Lee ◽  
Eunguk Lim ◽  
Seokjin Hwang ◽  
Seung Hee Yun ◽  
...  

Osteoporosis is a common disease caused by an imbalance of processes between bone resorption by osteoclasts and bone formation by osteoblasts in postmenopausal women. The roots of Gentiana lutea L. (GL) are reported to have beneficial effects on various human diseases related to liver functions and gastrointestinal motility, as well as on arthritis. Here, we fractionated and isolated bioactive constituent(s) responsible for anti-osteoporotic effects of GL root extract. A single phytochemical compound, loganic acid, was identified as a candidate osteoprotective agent. Its anti-osteoporotic effects were examined in vitro and in vivo. Treatment with loganic acid significantly increased osteoblastic differentiation in preosteoblast MC3T3-E1 cells by promoting alkaline phosphatase activity and increasing mRNA expression levels of bone metabolic markers such as Alpl, Bglap, and Sp7. However, loganic acid inhibited osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. For in vivo experiments, the effect of loganic acid on ovariectomized (OVX) mice was examined for 12 weeks. Loganic acid prevented OVX-induced bone mineral density loss and improved bone structural properties in osteoporotic model mice. These results suggest that loganic acid may be a potential therapeutic candidate for treatment of osteoporosis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hayato Mizuta ◽  
Koutaroh Okada ◽  
Mitsugu Araki ◽  
Jun Adachi ◽  
Ai Takemoto ◽  
...  

AbstractALK gene rearrangement was observed in 3%–5% of non-small cell lung cancer patients, and multiple ALK-tyrosine kinase inhibitors (TKIs) have been sequentially used. Multiple ALK-TKI resistance mutations have been identified from the patients, and several compound mutations, such as I1171N + F1174I or I1171N + L1198H are resistant to all the approved ALK-TKIs. In this study, we found that gilteritinib has an inhibitory effect on ALK-TKI–resistant single mutants and I1171N compound mutants in vitro and in vivo. Surprisingly, EML4-ALK I1171N + F1174I compound mutant-expressing tumors were not completely shrunk but regrew within a short period of time after alectinib or lorlatinib treatment. However, the relapsed tumor was markedly shrunk after switching to the gilteritinib in vivo model. In addition, gilteritinib was effective against NTRK-rearranged cancers including entrectinib-resistant NTRK1 G667C-mutant and ROS1 fusion-positive cancer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nozomi Igarashi ◽  
Megumi Honjo ◽  
Makoto Aihara

AbstractWe examined the effects of mTOR inhibitors on the fibrotic response induced by transforming growth factor-beta2 (TGF-β2) in cultured human trabecular meshwork (hTM) cells. TGF-β2-induced expression of fibronectin, collagen type I, alpha 1 chain (COL1A1), and alpha-smooth muscle actin (αSMA) in hTM cells was examined in the presence or absence of mTOR inhibitors using quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry. The migration rates of hTM cells were examined in the presence of TGF-β2 with or without mTOR inhibitors. An in vitro study showed that the expression of fibronectin, COL1A1, and αSMA was upregulated by TGF-β2 treatment of hTM cells; such upregulation was significantly suppressed by mTOR inhibitors. The inhibitors significantly reduced the migration rate of TGF-β2-stimulated hTM cells. mTOR inhibitors may usefully reduce the fibrotic response of hTM cells and we may have to explore if it is also effective in in vivo model.


2021 ◽  
Vol 22 (12) ◽  
pp. 6196
Author(s):  
Anna Pieniazek ◽  
Joanna Bernasinska-Slomczewska ◽  
Lukasz Gwozdzinski

The presence of toxins is believed to be a major factor in the development of uremia in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). Uremic toxins have been divided into 3 groups: small substances dissolved in water, medium molecules: peptides and low molecular weight proteins, and protein-bound toxins. One of the earliest known toxins is urea, the concentration of which was considered negligible in CKD patients. However, subsequent studies have shown that it can lead to increased production of reactive oxygen species (ROS), and induce insulin resistance in vitro and in vivo, as well as cause carbamylation of proteins, peptides, and amino acids. Other uremic toxins and their participation in the damage caused by oxidative stress to biological material are also presented. Macromolecules and molecules modified as a result of carbamylation, oxidative stress, and their adducts with uremic toxins, may lead to cardiovascular diseases, and increased risk of mortality in patients with CKD.


Sign in / Sign up

Export Citation Format

Share Document