Loss of Id4 Accelerates CLL Progression in TCL1 Mice

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3153-3153
Author(s):  
Shih-Shih Chen ◽  
Amy J. Johnson ◽  
Rainer Claus ◽  
Fred Sablitzky ◽  
Christoph Plass ◽  
...  

Abstract The inhibitor of DNA binding protein 4 (ID4) is a member of dominant negative basic helix loop helix (bHLH) transcription factor family that has a HLH domain but lacking DNA-binding domain. Methylation of ID4 in B-cell lineage malignancies including CLL and germinal center non-Hodgkin lymphomas (GC-NHLs) has been described. To date, the impact of Id4 loss in CLL has not been demonstrated. We utilized the TCL1 transgenic mouse model of human CLL to study the importance of loss of ID4 in disease progression. We demonstrated that ID4 was silenced by methylation only at the time mice had symptomatic leukemia. We therefore sought to investigate if earlier loss of Id4 would accelerate CLL progression. We generated mice with haploid loss of Id4 in TCL1 transgenic background by breeding homozygous TCL1 transgenic mice and mice with heterozygous Id4 mutant gene. By comparing to the control littermates with heterozygous TCL1 oncogene, mice with the loss of Id4 occur to have significantly accelerated CLL disease progression with shorter overall survival (12 versus 16 months, p-value<0.0001). The pathological analysis on Id4 mutant mice demonstrated that the CLL symptoms such as the elevated white blood cell counts, enlarged spleen and lymphoid tissues. We then performed the microarray studies on 1 month old TCL1 mice with control or mutant Id4 to identify ID4-dependent transcriptional changes in primary B-cells. Among the identified targets, genes involved in cell proliferation and anti-apoptosis were then verified. Supportively, B-cells from Id4 mutant TCL1 mice have significantly (p-value<0.001) diminished apoptosis in response to dexamethasone treatment. Additionally, both significant in vitro (p-value<0.001) and in vivo (p-value=0.025) increased proliferation of Id4 mutant TCL1 B-cells after the stimulation by CpG685NO168 was demonstrated. These data provide support that Id4 acts as tumor suppressor in transformed B-lymphocytes and is silenced through the process of methylation. The Effort to identify binding partners of Id4 in CLL cells and targeting its re-expression is warranted.

Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4154-4166 ◽  
Author(s):  
Robert L. Ilaria ◽  
Robert G. Hawley ◽  
Richard A. Van Etten

Abstract STAT5 is a member of the signal transducers and activation of transcription (STAT) family of latent transcription factors activated in a variety of cytokine signaling pathways. We introduced alanine substitution mutations in highly conserved regions of murine STAT5A and studied the mutants for dimerization, DNA binding, transactivation, and dominant negative effects on erythropoietin-induced STAT5-dependent transcriptional activation. The mutations included two near the amino-terminus (W255KR→AAA and R290QQ→AAA), two in the DNA-binding domain (E437E→AA and V466VV→AAA), and a carboxy-terminal truncation of STAT5A (STAT5A/▵53C) analogous to a naturally occurring isoform of rat STAT5B. All of the STAT mutant proteins were tyrosine phosphorylated by JAK2 and heterodimerized with STAT5B except for the WKR mutant, suggesting an important role for this region in STAT5 for stabilizing dimerization. The WKR, EE, and VVV mutants had no detectable DNA-binding activity, and the WKR and VVV mutants, but not EE, were defective in transcriptional induction. The VVV mutant had a moderate dominant negative effect on erythropoietin-induced STAT5 transcriptional activation, which was likely due to the formation of heterodimers that are defective in DNA binding. Interestingly, the WKR mutant had a potent dominant negative effect, comparable to the transactivation domain deletion mutant, ▵53C. Stable expression of either the WKR or ▵53C STAT5 mutants in the murine myeloid cytokine-dependent cell line 32D inhibited both interleukin-3–dependent proliferation and granulocyte colony-stimulating factor (G-CSF)–dependent differentiation, without induction of apoptosis. Expression of these mutants in primary murine bone marrow inhibited G-CSF–dependent granulocyte colony formation in vitro. These results demonstrate that mutations in distinct regions of STAT5 exert dominant negative effects on cytokine signaling, likely through different mechanisms, and suggest a role for STAT5 in proliferation and differentiation of myeloid cells.


2021 ◽  
Vol 22 (3) ◽  
pp. 1222
Author(s):  
Cristina Cuello ◽  
Cristina A. Martinez ◽  
Josep M. Cambra ◽  
Inmaculada Parrilla ◽  
Heriberto Rodriguez-Martinez ◽  
...  

This study was designed to investigate the impact of vitrification on the transcriptome profile of blastocysts using a porcine (Sus scrofa) model and a microarray approach. Blastocysts were collected from weaned sows (n = 13). A total of 60 blastocysts were vitrified (treatment group). After warming, vitrified embryos were cultured in vitro for 24 h. Non-vitrified blastocysts (n = 40) were used as controls. After the in vitro culture period, the embryo viability was morphologically assessed. A total of 30 viable embryos per group (three pools of 10 from 4 different donors each) were subjected to gene expression analysis. A fold change cut-off of ±1.5 and a restrictive threshold at p-value < 0.05 were used to distinguish differentially expressed genes (DEGs). The survival rates of vitrified/warmed blastocysts were similar to those of the control (nearly 100%, n.s.). A total of 205 (112 upregulated and 93 downregulated) were identified in the vitrified blastocysts compared to the control group. The vitrification/warming impact was moderate, and it was mainly related to the pathways of cell cycle, cellular senescence, gap junction, and signaling for TFGβ, p53, Fox, and MAPK. In conclusion, vitrification modified the transcriptome of in vivo-derived porcine blastocysts, resulting in minor gene expression changes.


1999 ◽  
Vol 19 (9) ◽  
pp. 6076-6084 ◽  
Author(s):  
Graeme C. M. Smith ◽  
Fabrizio d’adda di Fagagna ◽  
Nicholas D. Lakin ◽  
Stephen P. Jackson

ABSTRACT The activation of the cysteine proteases with aspartate specificity, termed caspases, is of fundamental importance for the execution of programmed cell death. These proteases are highly specific in their action and activate or inhibit a variety of key protein molecules in the cell. Here, we study the effect of apoptosis on the integrity of two proteins that have critical roles in DNA damage signalling, cell cycle checkpoint controls, and genome maintenance—the product of the gene defective in ataxia telangiectasia, ATM, and the related protein ATR. We find that ATM but not ATR is specifically cleaved in cells induced to undergo apoptosis by a variety of stimuli. We establish that ATM cleavage in vivo is dependent on caspases, reveal that ATM is an efficient substrate for caspase 3 but not caspase 6 in vitro, and show that the in vitro caspase 3 cleavage pattern mirrors that in cells undergoing apoptosis. Strikingly, apoptotic cleavage of ATM in vivo abrogates its protein kinase activity against p53 but has no apparent effect on the DNA binding properties of ATM. These data suggest that the cleavage of ATM during apoptosis generates a kinase-inactive protein that acts, through its DNA binding ability, in a trans-dominant-negative fashion to prevent DNA repair and DNA damage signalling.


Blood ◽  
2008 ◽  
Vol 111 (6) ◽  
pp. 3211-3219 ◽  
Author(s):  
Shinichi Kitada ◽  
Christina L. Kress ◽  
Maryla Krajewska ◽  
Lee Jia ◽  
Maurizio Pellecchia ◽  
...  

Abstract Altered expression of Bcl-2 family proteins plays central roles in apoptosis dysregulation in cancer and leukemia, promoting malignant cell expansion and contributing to chemoresistance. In this study, we compared the toxicity and efficacy in mice of natural product gossypol and its semisynthetic derivative apo-gossypol, compounds that bind and inhibit antiapoptotic Bcl-2 family proteins. Daily oral dosing studies showed that mice tolerate doses of apogossypol 2- to 4-times higher than gossypol. Hepatotoxicity and gastrointestinal toxicity represented the major adverse activities of gossypol, with apogossypol far less toxic. Efficacy was tested in transgenic mice in which Bcl-2 is overexpressed in B cells, resembling low-grade follicular lymphoma in humans. In vitro, Bcl-2–expressing B cells from transgenic mice were more sensitive to cytotoxicity induced by apogossypol than gossypol, with LD50 values of 3 to 5 μM and 7.5 to 10 μM, respectively. In vivo, using the maximum tolerated dose of gossypol for sequential daily dosing, apogossypol displayed superior activity to gossypol in terms of reducing splenomegaly and reducing B-cell counts in spleens of Bcl-2–transgenic mice. Taken together, these studies indicate that apogossypol is superior to parent compound gossypol with respect to toxicology and efficacy, suggesting that further development of this compound for cancer therapy is warranted.


2021 ◽  
Vol 12 ◽  
Author(s):  
Samaa T. Gobran ◽  
Petronela Ancuta ◽  
Naglaa H. Shoukry

Nearly 2.3 million individuals worldwide are coinfected with human immunodeficiency virus (HIV) and hepatitis C virus (HCV). Odds of HCV infection are six times higher in people living with HIV (PLWH) compared to their HIV-negative counterparts, with the highest prevalence among people who inject drugs (PWID) and men who have sex with men (MSM). HIV coinfection has a detrimental impact on the natural history of HCV, including higher rates of HCV persistence following acute infection, higher viral loads, and accelerated progression of liver fibrosis and development of end-stage liver disease compared to HCV monoinfection. Similarly, it has been reported that HCV coinfection impacts HIV disease progression in PLWH receiving anti-retroviral therapies (ART) where HCV coinfection negatively affects the homeostasis of CD4+ T cell counts and facilitates HIV replication and viral reservoir persistence. While ART does not cure HIV, direct acting antivirals (DAA) can now achieve HCV cure in nearly 95% of coinfected individuals. However, little is known about how HCV cure and the subsequent resolution of liver inflammation influence systemic immune activation, immune reconstitution and the latent HIV reservoir. In this review, we will summarize the current knowledge regarding the pathogenesis of HIV/HCV coinfection, the effects of HCV coinfection on HIV disease progression in the context of ART, the impact of HIV on HCV-associated liver morbidity, and the consequences of DAA-mediated HCV cure on immune reconstitution and HIV reservoir persistence in coinfected patients.


2020 ◽  
Author(s):  
Silvia Llonch ◽  
Montserrat Barragán ◽  
Paula Nieto ◽  
Anna Mallol ◽  
Marc Elosua-Bayes ◽  
...  

AbstractStudy questionTo which degree does maternal age affect the transcriptome of human oocytes at the germinal vesicle (GV) stage or at metaphase II after maturation in vitro (IVM-MII)?Summary answerWhile the oocytes’ transcriptome is predominantly determined by maturation stage, transcript levels of genes related to chromosome segregation, mitochondria and RNA processing are affected by age after in vitro maturation of denuded oocytes.What is known alreadyFemale fertility is inversely correlated with maternal age due to both a depletion of the oocyte pool and a reduction in oocyte developmental competence. Few studies have addressed the effect of maternal age on the human mature oocyte (MII) transcriptome, which is established during oocyte growth and maturation, and the pathways involved remain unclear. Here, we characterize and compare the transcriptomes of a large cohort of fully grown GV and IVM-MII oocytes from women of varying reproductive age.Study design, size, durationIn this prospective molecular study, 37 women were recruited from May 2018 to June 2019. The mean age was 28.8 years (SD=7.7, range 18-43). A total of 72 oocytes were included in the study at GV stage after ovarian stimulation, and analyzed as GV (n=40) and in vitro matured oocytes (IVM-MII; n=32).Participants/materials, setting, methodsDenuded oocytes were included either as GV at the time of ovum pick-up or as IVM-MII after in vitro maturation for 30 hours in G2™ medium, and processed for transcriptomic analysis by single-cell RNA-seq using the Smart-seq2 technology. Cluster and maturation stage marker analysis were performed using the Seurat R package. Genes with an average fold change greater than 2 and a p-value < 0.01 were considered maturation stage markers. A Pearson correlation test was used to identify genes whose expression levels changed progressively with age. Those genes presenting a correlation value (R) >= |0.3| and a p-value < 0.05 were considered significant.Main results and the role of chanceFirst, by exploration of the RNA-seq data using tSNE dimensionality reduction, we identified two clusters of cells reflecting the oocyte maturation stage (GV and IVM-MII) with 4,445 and 324 putative marker genes, respectively. Next we identified genes, for which RNA levels either progressively increased or decreased with age. This analysis was performed independently for GV and IVM-MII oocytes. Our results indicate that the transcriptome is more affected by age in IVM-MII oocytes (1,219 genes) than in GV oocytes (596 genes). In particular, we found that genes involved in chromosome segregation and RNA splicing significantly increase in transcript levels with age, while genes related to mitochondrial activity present lower transcript levels with age. Gene regulatory network analysis revealed potential upstream master regulator functions for genes whose transcript levels present positive (GPBP1, RLF, SON, TTF1) or negative (BNC1, THRB) correlation with age.Limitations, reasons for cautionIVM-MII oocytes used in this study were obtained after in vitro maturation of denuded GV oocytes, therefore, their transcriptome might not be fully representative of in vivo matured MII oocytes.The Smart-seq2 methodology used in this study detects polyadenylated transcripts only and we could therefore not assess non-polyadenylated transcripts.Wider implications of the findingsOur analysis suggests that advanced maternal age does not globally affect the oocyte transcriptome at GV or IVM-MII stages. Nonetheless, hundreds of genes displayed altered transcript levels with age, particularly in IVM-MII oocytes. Especially affected by age were genes related to chromosome segregation and mitochondrial function, pathways known to be involved in oocyte ageing. Our study thereby suggests that misregulation of chromosome segregation and mitochondrial pathways also at the RNA-level might contribute to the age-related quality decline in human oocytes.Study funding/competing interest(s)This study was funded by the AXA research fund, the European commission, intramural funding of Clinica EUGIN, the Spanish Ministry of Science, Innovation and Universities, the Catalan Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) and by contributions of the Spanish Ministry of Economy, Industry and Competitiveness (MEIC) to the EMBL partnership and to the “Centro de Excelencia Severo Ochoa”.The authors have no conflict of interest to declare.


2018 ◽  
Vol 46 (8) ◽  
pp. 765-771
Author(s):  
A. V. Deryugina ◽  
M. N. Ivashchenko ◽  
P. S. Ignat'ev ◽  
A. G. Samodelkin

Rationale:Modern cell diagnostic methods are in high demand during the development of new approaches in personalized medicine. Coherent phase interferometry and cell microelectrophoresis are among such methods that are being actively introduced into the diagnostic process in medical institutions.Aim:To substantiate the potential use of biophysical and morphodensitometrical erythrocytes parameters as criteria of treatment efcacy and course of adaptation process in patients with gastrointestinal tract disorders.Materials and methods:The study included 25 patients aged from 40 to 54 years (11 males and 14 females), among them 9 (36%) with gastric peptic ulcer, 3 (12%) with duodenal ulcer, 8 (32%) with acute gastritis, and 5 (20%) with acute pancreatitis. Biophysical and morphological particulars of peripheral blood erythrocytes were assessed before and after treatment using cell diagnostic techniques, such as microelectrophoresis and laser modulation interference microscopy. Also, we evaluated changes over time in routine clinical laboratory tests, such as red and white blood cell counts, hemoglobin levels, and erythrocyte sedimentation rate (ESR), and differential leukocyte counts. The control group included 10 healthy donors aged from 36 to 52 years.In vitroexperiments were performed to assess the erythrocyte electrophoretic mobility (EEPM) and morphology of erythrocytes treated with epinephrine or cortisol.Results:After the treatment, the patients demonstrated a decrease in their leukocyte counts (by 27%), a 2-fold increase in monocyte counts and an ESR decrease (by 10%), compared to the corresponding baseline values before treatment (p < 0.05 for all comparisons). EEPM increased by 12% (1.37 vs. 1.22 mcm × cm/V × s, p < 0.05). The erythrocyte pool of the patients before treatment, had a decreased proportion of discocytes, compared to that in the control group (85.2 vs. 95.4%, р < 0.05), increased proportions of echinocytes, stomatocytes and degenerative forms (11, 2.8 and 1%, respectively, р < 0.05). After the treatment, the discocytes counts increased virtually up to their physiological normal range (91.3%). However, the surface of the discoid cells remained heterogeneous with multiple microspicules; this resulted in changes of electrokinetic and morphological properties of erythrocyte response to stress reaction occurring in the body. The impact of the stress effectors was confrmed inin vitroexperiments assessing the effects of epinephrine (1 × 10-9 g/mL) and cortisol (5 × 10-7 g/mL) on erythrocytes. At 120 minutes of the experiment, epinephrine decreased EEPM (1.14 vs. 1.24 mcm × cm/V × s at baseline, р < 0.05) and increased cell sphericity. On the contrary, cortisol increased EEPM (1.72 vs. 1.36 mcm × cm/V × s, р < 0.05), with non-signifcant echinocytic transformation.Conclusion:Biophysical and morphodensitometric parameters of red blood cells obtained with the use of current express methods of cell microelectrophoresis and coherent interference microscopy help to objectivize the intensity of stress response during a pathological process and activation of adaptation mechanisms during the treatment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhe-Zheng Wang ◽  
Jia Song ◽  
Hai Wang ◽  
Jing-Xian Li ◽  
Qiao Xiao ◽  
...  

Ectopic lymphoid tissues (eLTs) characterized by B cell aggregation contribute to the local immunoglobulin production in nasal polyps (NPs). B cell-activating factor (BAFF) is vital for B cell survival, proliferation, and maturation. The purpose of this study is to investigate whether BAFF is involved in the B cell survival and eLT formation in NPs. The mRNA and protein levels of BAFF in NP tissues with and without eLTs were detected by PCR and ELISA assay, respectively. The cellular sources of BAFF and active caspase-3-positive B cells in NPs were studied by immunofluorescence staining. B cells purified from NP tissues were stimulated with BAFF and were analyzed by flow cytometry. Stromal cells purified from NP tissues were stimulated with lymphotoxin (LT) α1β2, and BAFF levels in culture supernatants were analyzed by ELISA. Compared with those in control tissues and NPs without eLTs, the BAFF levels were elevated in NPs with eLTs. Abundant BAFF-positive cells and few active caspase-3-positive apoptotic B cells were found in NPs with eLTs, in contrast to those in NPs without eLTs. There was a negative correlation between the numbers of BAFF-positive cells and frequencies of apoptotic B cells in total B cells in NP tissues. BAFF protected nasal polyp B cells from apoptosis in vitro. Stromal cells were an important cellular source of BAFF in NPs with eLTs. LTα1β2 induced BAFF production from nasal stromal cells in vitro. We propose that BAFF contribute to eLT formation in NPs by promoting B cell survival.


2020 ◽  
Vol 21 (18) ◽  
pp. 6925
Author(s):  
Meha Kabra ◽  
Bikash Ranjan Pattnaik

Ion channels are membrane-spanning integral proteins expressed in multiple organs, including the eye. In the eye, ion channels are involved in various physiological processes, like signal transmission and visual processing. A wide range of mutations have been reported in the corresponding genes and their interacting subunit coding genes, which contribute significantly to an array of blindness, termed ocular channelopathies. These mutations result in either a loss- or gain-of channel functions affecting the structure, assembly, trafficking, and localization of channel proteins. A dominant-negative effect is caused in a few channels formed by the assembly of several subunits that exist as homo- or heteromeric proteins. Here, we review the role of different mutations in switching a “sensing” ion channel to “non-sensing,” leading to ocular channelopathies like Leber’s congenital amaurosis 16 (LCA16), cone dystrophy, congenital stationary night blindness (CSNB), achromatopsia, bestrophinopathies, retinitis pigmentosa, etc. We also discuss the various in vitro and in vivo disease models available to investigate the impact of mutations on channel properties, to dissect the disease mechanism, and understand the pathophysiology. Innovating the potential pharmacological and therapeutic approaches and their efficient delivery to the eye for reversing a “non-sensing” channel to “sensing” would be life-changing.


1997 ◽  
Vol 186 (12) ◽  
pp. 2075-2080 ◽  
Author(s):  
Brian R. Wong ◽  
Régis Josien ◽  
Soo Young Lee ◽  
Birthe Sauter ◽  
Hong-Li Li ◽  
...  

TRANCE (tumor necrosis factor [TNF]–related activation-induced cytokine) is a new member of the TNF family that is induced upon T cell receptor engagement and activates c-Jun N-terminal kinase (JNK) after interaction with its putative receptor (TRANCE-R). In addition, TRANCE expression is restricted to lymphoid organs and T cells. Here, we show that high levels of TRANCE-R are detected on mature dendritic cells (DCs) but not on freshly isolated B cells, T cells, or macrophages. Signaling by TRANCE-R appears to be dependent on TNF receptor–associated factor 2 (TRAF2), since JNK induction is impaired in cells from transgenic mice overexpressing a dominant negative TRAF2 protein. TRANCE inhibits apoptosis of mouse bone marrow–derived DCs and human monocyte-derived DCs in vitro. The resulting increase in DC survival is accompanied by a proportional increase in DC-mediated T cell proliferation in a mixed leukocyte reaction. TRANCE upregulates Bcl-xL expression, suggesting a potential mechanism for enhanced DC survival. TRANCE does not induce the proliferation of or increase the survival of T or B cells. Therefore, TRANCE is a new DC-restricted survival factor that mediates T cell–DC communication and may provide a tool to selectively enhance DC activity.


Sign in / Sign up

Export Citation Format

Share Document