MicroRNA Expression Profiling of High and Low Risk MDS

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3645-3645
Author(s):  
Joop Gaken ◽  
Azim M Mohamedali ◽  
Natalie Twine ◽  
Nigel Westwood ◽  
Barbara Czepulkowski ◽  
...  

Abstract MicroRNA’s (miR) are small noncoding RNA’s of 18–25 nucleotides that have a critical impact on gene regulation affecting cell growth & differentiation. Importantly, miR expression profiles can help distinguish normal cells from cancerous cells. This is particularly relevant to myelodysplastic syndromes both because of their heterogeneity as well as the difficulties associated with the early diagnosis of these disorders. We investigated the miR profiles of CD34+ and total nucleated cells (TNC) from different subtypes of MDS (n=135) and compared these to AML (n=20), normal CD34+ (n=5) and normal TNC’s (n=6). We used the Illumina universal array matrix to interrogate 470 validated miR’s from the Sanger mir-Base database and a further 265 putative miR’s from the literature. Array intensity data was analysed using the Partek Genomics Suite v6.3. Data was normalised using quantile normalisation and unchanging miR’s removed. A 1-way ANOVA was used to identify differentially expressed miR’s and a FDR correction applied to control for Type I errors. Our initial analysis compared TNC (n=6) with CD34 cells (n=5) from normal controls. As expected both groups clustered separately with mir-199a (p<10−9), mir-30a-3p (p<10−7), mir-507 (p<10−7) showing the most significant differences out of a total of 250 differentially expressed miR’s. Our results clearly identified an expression signature for low risk (LR), high risk (HR) and AML using data from both TNC’s and CD34+ cells compared to normal TNC and CD34+ cells. Cluster analysis of miR’s of CD34+ cells from normal controls (n=5) and monosomy 7 (−7) patients (n=6) identified a panel of 18 miR’s that differentiated both groups. Similarly, analysis of CD34+ cells from HR MDS (n=7) and normal CD34+ controls identified a unique panel of 34 miR’s differentiating both groups. Analysis of CD34+ cells from both del(5q) (n=4) and LR MDS cases (n=8) identified a panel of 154 and 23 miR’s respectively that differentiated these from the normal controls. A 4-way intersect analysis of miR expression from CD34+ cells from LR, HR, del(5q) and −7 groups did not identify any common miR’s when compared to normal CD34+ cells. However, a 3-way analysis using LR, HR and −7 groups identified mir-34a as a single common miR. The mir-34 family (a, b, c) are transcriptional targets for p53 and have been shown to be induced by DNA damage and oncogenic stress (He et al, 2007). A direct comparison of miR expression in CD34+ cells from LR and HR showed only 4 miR’s that are differentially expressed with significant fold changes; mir-656 (53x), mir-498 (32x), mir-181b (−17x) and mir-130a (−4x). Such differences where not observed in TNC from LR and HR samples. A 4-way intersect analysis on TNC’s from LR (n=47), del(5q) (n=5), HR (n=50) and −7 (n=8) cases identified 8 common miR’s; mir-34b, mir-139, mir-429, mir-519a, mir-548b, mir-561, mir-580 and mir-619. Comparison of the miR expression in TNC from AML samples against normal TNC identified 49 differentially expressed miR’s including let-7e, mir-181a, mir- 181b, mir-199a and mir-221 in accordance with previous published miR profiles in AML (Dixon-McIver et al, 2008). We also observed a 17 fold down regulation of mir-127 which is often silenced in cancer cells due to the methylation and acetylation status of the mir-127 promoter. The proto-oncogene BCL6 is a verified target of mir-127 (Saito et al, 2006). To our knowledge this is the first study in MDS that shows unique miR profiles in TNC for each subgroup when compared to normal TNC. Furthermore, miR profiles from CD34+ cells distinguish between the different MDS subtypes. In conclusion our analysis has shown that profiling miR’s in MDS results in unique profiles which may be used to discriminate between HR and LR MDS subgroups.

Methodology ◽  
2015 ◽  
Vol 11 (3) ◽  
pp. 110-115 ◽  
Author(s):  
Rand R. Wilcox ◽  
Jinxia Ma

Abstract. The paper compares methods that allow both within group and between group heteroscedasticity when performing all pairwise comparisons of the least squares lines associated with J independent groups. The methods are based on simple extension of results derived by Johansen (1980) and Welch (1938) in conjunction with the HC3 and HC4 estimators. The probability of one or more Type I errors is controlled using the improvement on the Bonferroni method derived by Hochberg (1988) . Results are illustrated using data from the Well Elderly 2 study, which motivated this paper.


Blood ◽  
2004 ◽  
Vol 104 (13) ◽  
pp. 4210-4218 ◽  
Author(s):  
Guibin Chen ◽  
Weihua Zeng ◽  
Akira Miyazato ◽  
Eric Billings ◽  
Jaroslaw P. Maciejewski ◽  
...  

Abstract Aneuploidy, especially monosomy 7 and trisomy 8, is a frequent cytogenetic abnormality in the myelodysplastic syndromes (MDSs). Patients with monosomy 7 and trisomy 8 have distinctly different clinical courses, responses to therapy, and survival probabilities. To determine disease-specific molecular characteristics, we analyzed the gene expression pattern in purified CD34 hematopoietic progenitor cells obtained from MDS patients with monosomy 7 and trisomy 8 using Affymetrix GeneChips. Two methods were employed: standard hybridization and a small-sample RNA amplification protocol for the limited amounts of RNA available from individual cases; results were comparable between these 2 techniques. Microarray data were confirmed by gene amplification and flow cytometry using individual patient samples. Genes related to hematopoietic progenitor cell proliferation and blood cell function were dysregulated in CD34 cells of both monosomy 7 and trisomy 8 MDS. In trisomy 8, up-regulated genes were primarily involved in immune and inflammatory responses, and down-regulated genes have been implicated in apoptosis inhibition. CD34 cells in monosomy 7 showed up-regulation of genes inducing leukemia transformation and tumorigenesis and apoptosis and down-regulation of genes controlling cell growth and differentiation. These results imply distinct molecular mechanisms for monosomy 7 and trisomy 8 MDS and implicate specific pathogenic pathways.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8128 ◽  
Author(s):  
Cheng Yue ◽  
Hongtao Ma ◽  
Yubai Zhou

Background Lung cancer has the highest morbidity and mortality worldwide, and lung adenocarcinoma (LADC) is the most common pathological subtype. Accumulating evidence suggests the tumor microenvironment (TME) is correlated with the tumor progress and the patient’s outcome. As the major components of TME, the tumor-infiltrated immune cells and stromal cells have attracted more and more attention. In this study, differentially expressed immune and stromal signature genes were used to construct a TME-related prognostic model for predicting the outcomes of LADC patients. Methods The expression profiles of LADC samples with clinical information were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The differentially expressed genes (DEGs) related to the TME of LADC were identified using TCGA dataset by Wilcoxon rank sum test. The prognostic effects of TME-related DEGs were analyzed using univariate Cox regression. Then, the least absolute shrinkage and selection operator (LASSO) regression was performed to reduce the overfit and the number of genes for further analysis. Next, the prognostic model was constructed by step multivariate Cox regression and risk score of each sample was calculated. Then, survival and Receiver Operating Characteristic (ROC) analyses were conducted to validate the model using TCGA and GEO datasets, respectively. The Kyoto Encyclopedia of Genes and Genomes analysis of gene signature was performed using Gene Set Enrichment Analysis (GSEA). Finally, the overall immune status, tumor purity and the expression profiles of HLA genes of high- and low-risk samples was further analyzed to reveal the potential mechanisms of prognostic effects of the model. Results A total of 93 TME-related DEGs were identified, of which 23 DEGs were up-regulated and 70 DEGs were down-regulated. The univariate cox analysis indicated that 23 DEGs has the prognostic effects, the hazard ratio ranged from 0.65 to 1.25 (p < 0.05). Then, seven genes were screened out from the 23 DEGs by LASSO regression method and were further analyzed by step multivariate Cox regression. Finally, a three-gene (ADAM12, Bruton Tyrosine Kinase (BTK), ERG) signature was constructed, and ADAM12, BTK can be used as independent prognostic factors. The three-gene signature well stratified the LADC patients in both training (TCGA) and testing (GEO) datasets as high-risk and low-risk groups, the 3-year area under curve (AUC) of ROC curves of three GEO sets were 0.718 (GSE3141), 0.646 (GSE30219) and 0.643 (GSE50081). The GSEA analysis indicated that highly expressed ADAM12, BTK, ERG mainly correlated with the activation of pathways involving in focal adhesion, immune regulation. The immune analysis indicated that the low-risk group has more immune activities and higher expression of HLA genes than that of the high-risk group. In sum, we identified and constructed a three TME-related DEGs signature, which could be used to predict the prognosis of LADC patients.


2019 ◽  
Vol 80 (04) ◽  
pp. 240-249
Author(s):  
Jiajia Wang ◽  
Jie Ma

Glioblastoma multiforme (GBM), an aggressive brain tumor, is characterized histologically by the presence of a necrotic center surrounded by so-called pseudopalisading cells. Pseudopalisading necrosis has long been used as a prognostic feature. However, the underlying molecular mechanism regulating the progression of GBMs remains unclear. We hypothesized that the gene expression profiles of individual cancers, specifically necrosis-related genes, would provide objective information that would allow for the creation of a prognostic index. Gene expression profiles of necrotic and nonnecrotic areas were obtained from the Ivy Glioblastoma Atlas Project (IVY GAP) database to explore the differentially expressed genes.A robust signature of seven genes was identified as a predictor for glioblastoma and low-grade glioma (GBM/LGG) in patients from The Cancer Genome Atlas (TCGA) cohort. This set of genes was able to stratify GBM/LGG and GBM patients into high-risk and low-risk groups in the training set as well as the validation set. The TCGA, Repository for Molecular Brain Neoplasia Data (Rembrandt), and GSE16011 databases were then used to validate the expression level of these seven genes in GBMs and LGGs. Finally, the differentially expressed genes (DEGs) in the high-risk and low-risk groups were subjected to gene ontology enrichment, Kyoto Encyclopedia of Genes and Genomes pathway, and gene set enrichment analyses, and they revealed that these DEGs were associated with immune and inflammatory responses. In conclusion, our study identified a novel seven-gene signature that may guide the prognostic prediction and development of therapeutic applications.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3020-3020
Author(s):  
Alicia Báez ◽  
Beatriz Martin-Antonio ◽  
Concepción Prats-Martín ◽  
Isabel Álvarez-Laderas ◽  
María Victoria Barbado ◽  
...  

Abstract Abstract 3020 Introduction: Hematopoietic progenitors cells (HPCs) used in allogenic transplantation (allo-HSCT) may have different biological properties depending on their source of origin: mobilized peripheral blood (PB), bone marrow (BM) or umbilical cord (UC), which may be reflected in miRNAs or gene expression. The identification of different patterns of expression could have clinical implications. The aim of this study was to determine differences in miRNAs and gene expression patterns in the different sources of HPCs used in allo-HSCT. Materials and Method: CD34 + cells were isolated by immunomagnetic separation and sorting from 5 healthy donors per type of source: UC, BM and PB mobilized with G-CSF. A pool of samples from PB not mobilized was used as reference group. We analyzed the expression of 375 miRNAs using TaqMan MicroRNA Arrays Human v2.0 (Applied Biosystems), and gene expression using Whole Human Genome Oligo microarray kit 4×44K (Agilent). The expression levels of genes and miRNAs were obtained by the 2-ΔΔCTmethod. From expression data hierarchical clustering was performed using the Euclidean distance. To identify genes and miRNAs differentially expressed between the different sources of HPCs statistical Kruskal Wallis test was applied. All analysis were performed using the Multiexperiment Viewer 4.7.1. The function of the miRNAs and genes of interest was determined from the various databases available online (TAM database, Gene Ontology and TargetScan Human). Results: Forty-two miRNAs differentially expressed between the different sources were identified. As compared to BM or UC, in mobilized PB most miRNAs were overexpressed, including the miRNA family of miR515, which is characteristic of embryonic stem cells. On the other hand, 47 genes differentially expressed between the different sources were identified. Interestingly, a similar pattern of expression was observed between movilized PB and UC as compared to BM. Interestingly, 13 of these genes are targets of the miRNAs also identified in this study, which suggests that their expression might be regulated by these miRNAs. Conclusion: There are significant differences in miRNAs and gene expression levels between the different sources of HPCs Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5548-5548
Author(s):  
Rosalia Di Stefano ◽  
Elena Baiamonte ◽  
Melania Lo Iacono ◽  
Barbara Spina ◽  
Flavia Contino ◽  
...  

Abstract Introduction: Genetic modification of autologous hematopoietic stem and progenitor cells (HSPC) is a promising clinical intervention to cure inherited monogenic diseases. Successful gene therapy trials have already been conducted using CD34+ cells from bone marrow and from mobilized peripheral blood. In this regard, cord blood (CB) represents an attractive source of HSCs due to its high concentration of high proliferative HSPC and increased susceptibility to be transduced by lentiviral vectors. Unfortunately, the major disadvantage is the limited number of HSC in the CB collection. Consequently, ex-vivo expansion of CB-HSC is desirable to extend clinical applications. Purposes: To investigate the ability of UCB-cd34+ cells to be expanded in serum-free media supplemented with the early acting hematopoietic cytokines SCF,TPO and Flt-3 ligant (STF) and to characterize CD34+ cells subtypes, clonogenic capacity and gene expression profile during expansion. We also wanted to investigate the susceptibility of the expanded cd34+ cells to be transduced by a GFP-lentiviral vector (LV-GFP) Material and Methods: CD34+ immunoselected cells from 10 UCB were grown for 8 days in customized serum-free medium formulated for HSC expansion, supplemented with STF cytokines. Numbers end frequency of CD34+cells and co-expression of the primitive surface antigens (CD38, CD133, CD90) was evaluated during expansion. Colonies developed in methylcellulose were scored for enumeration ad typing. LV-GFP transduction efficiency was evaluated in CD34+ cells cultured for 4 days in expansion medium plus STF and for 24 hrs in X-vivo10 medium with STF±IL-3 cytokines; the last condition slightly expands CD34+ cells (1.3 fold) and are currently used for HSPC-lentivector transduction in gene therapy clinical trials. The transduction efficiency was evaluated by measuring the percentage of GFP+ cells in the bulk and in colonies developed in methylcellulose and the VCN/cell by Q-PCR. Gene expression profiles were analyzed by human whole genome Agilent microarray Technology to detect differentially expressed genes between expanded, ex-vivo medium cultured and un-cultured cells. Results: We found an average of 8 fold-increase CD34+cells at day 4 and of 22 fold- increase at day 8 of culture. The frequency of CD34+ was maintained at day 4 and declined of about 50% at day 8. CD34+/CD38- early progenitors doublet as early as day 4, differences in CD34+/CD133+ and CD34+/CD90+cells were not significant. The number of CFU slightly increased during expansion while the relative frequency of colonies type did not significantly changed. Four days expanded CD34+ cells were transduced more efficiently than those grown in ex-vivo medium even in presence of IL-3 added to the STF cytokine cocktail. Comprehensive gene expression profile analysis highlighted about 4000 genes differentially expressed in CD34+ cells expanded for 4 and for 8 days compared to that of the un-cultured cells. Conversely, the expression profiles analysis did not show any clear separation between different cell culture methods (expansion vs ex-vivo medium). Specifically, the number of differentially expressed genes in common between the different culture conditions compared with the un-cultured cells was statistically significant. Unsurprisingly, the common up-regulated genes were related to the cell cycle. The likeness between the gene expression profiles of the different culture conditions was also validated by the identification of a significantly small number of differentially expressed genes between them. Conclusions: UCB-CD34+ cells can be efficiently expanded and transduced in serum free conditions. The expanded cells exhibited phenotypic marchers typical of early progenitors and developed colonies in number and in type similar to the unmanipulated cells and exhibited whole gene expression profile that is consisted with that of CD34+ cells exposed for the short term culture conditions currently used in gene therapy trial mediated by lentiviral vectors. Results from this study open a window on the future possibility of using homologous UCB-HSC as target for gene correction in patients diagnosed for a genetic disorder in prenatal time. The genetically modified cells would be stored and used for gene therapy in the same individual in pediatric age. This work was funded by the F and P Cutino Foundation - Project RiMedRi CUP G73F12000150004 Disclosures No relevant conflicts of interest to declare.


2011 ◽  
Vol 29 (4_suppl) ◽  
pp. 153-153 ◽  
Author(s):  
N. A. Schultz ◽  
J. Werner ◽  
H. Willenbrock ◽  
A. Roslind ◽  
T. Horn ◽  
...  

153 Background: The aim was: 1) to define the global microRNA (miRNA) expression pattern in pancreatic cancer (PC) and compare it with normal pancreas (NP) and chronic pancreatitis (CP); 2) to validate reported diagnostic miR profiles in PC; 3) to discover new diagnostic miRs in pancreas samples without micro-dissection of cancer cells. Methods: MiR expression patterns in FFPE tissue blocks from patients operated for pancreatic ductal adenocarcinoma (PDAC, n=170) and ampullary adenocarcinomas (A-AC, n=107) were determined using TaqMan Human miR microarrray (Applied Biosystem; 754 miRs were determined) and compared to profiles of CP (n=23) and NP (n=28). Raw Ct-values were normalized using quantile-normalisation. Results: 83miRs were differentially expressed in PDAC and NP (42 higher expression; 41 reduced expression in PDAC). 32 miRs were differentially expressed in PDAC and CP. The most differentially expressed miRs were miR-614, miR-492, miR-622, miR-135b* and miR-196. The miR signatures of PDAC and A-AC were highly correlated (0.99; only 5 miRs were significantly differentially expressed). An earlier reported diagnostic miR profile for PDAC was validated (mirR196b - miR217), and 3 other significant profiles were identified (Table). A more complex Lasso classifier using 19 miRs could separate PDAC from NP and CP (accuracy = 98%). Conclusions: We identified systematic differences in patterns of miR expressions between tumor tissue including both cancer cells and surrounding desmoplasia obtained from patients with PDAC and A-AC compared to tissue from patients with CP and NP. We validated the diagnostic miR expression profile (miR-196b, miR-217) described by Szafranska et al. (Clin Chem 2008;54:1716-24). Furthermore, we identified 5 miRs which were better to discriminate PDAC and A-AC from CP and NP. Prospective studies are needed to evaluate if this panel of miRs is useful for early diagnosis of patients with PDAC. [Table: see text] No significant financial relationships to disclose.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252401
Author(s):  
Kira Philipsen Prahm ◽  
Claus Kim Høgdall ◽  
Mona Aarenstrup Karlsen ◽  
Ib Jarle Christensen ◽  
Guy Wayne Novotny ◽  
...  

The purpose of the current study was to clarify differences in microRNA expression according to clinicopathological characteristics, and to investigate if miRNA profiles could predict cytoreductive outcome in patients with FIGO stage IIIC and IV ovarian cancer. Patients enrolled in the Pelvic Mass study between 2004 and 2010, diagnosed and surgically treated for epithelial ovarian cancer, were used for investigation. MicroRNA was profiled from tumour tissue with global microRNA microarray analysis. Differences in miRNA expression profiles were analysed according to histologic subtype, FIGO stage, tumour grade, type I or II tumours and result of primary cytoreductive surgery. One microRNA, miR-130a, which was found to be associated with serous histology and advanced FIGO stage, was also validated using data from external cohorts. Another seven microRNAs (miR-34a, miR-455-3p, miR-595, miR-1301, miR-146-5p, 193a-5p, miR-939) were found to be significantly associated with the clinicopathological characteristics (p ≤ 0.001), in our data, but mere not similarly significant when tested against external cohorts. Further validation in comparable cohorts, with microRNA profiled using newest and similar methods are warranted.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 931-931
Author(s):  
Andrew Wu ◽  
Lin Hanyang ◽  
Katharina Rothe ◽  
Min Chen ◽  
Jens Ruschmann ◽  
...  

Abstract Chronic myeloid leukemia (CML) stem/progenitor cells and BCR-ABL+ acute lymphoblastic leukemia (ALL) blast cells are insensitive to tyrosine kinase inhibitor (TKI) monotherapies. These cells rapidly generate therapy-resistant clones in vitro and in vivo and are often responsible for disease relapse. Therefore, identification of predictive biomarkers and novel treatments that target key molecular events active in leukemic stem cells (LSCs) are needed. MicroRNAs (miRNAs) are small molecules that regulate the gene expression network and are highly deregulated in many cancers. Through global transcriptome profiling, we have recently identified 66 differentially expressed miRNAs in pre-treatment CD34+ stem/progenitor cells from CML patients (n=6) compared to healthy bone marrow (NBM) controls (n=3, adjusted P<0.05); 26 differentially expressed miRNAs were identified between subsequent IM-nonresponders and IM-responders (P<0.05). 21 differentially expressed miRNAs were successfully validated in additional IM-responders (n=11), IM-nonresponders (n=11) and NBM (n=11). Interestingly, miR-185 was discovered to be one of the most highly deregulated miRNAs, with significant reduction in CD34+ cells from IM-nonresponders compared to IM-responders (p=0.0006). This significant change was further demonstrated in CD34+ cells from CML patients (n=60) before and after 3-month TKI nilotinib treatment in a clinical trial (p<0.05). We further demonstrated that miR-185 functions as a tumor suppressor; its restored expression by lentiviral transduction in CD34+ IM-nonresponder cells significantly impaired survival of these cells and sensitized them to TKI treatment in vitro. Restored miR-185 expression in BCR-ABL+ ALL blasts led to a profound decrease in leukemia burden and significantly enhanced survival compared to controls in vivo (median survival 65 vs. 47 days, P=0.0005). Strikingly, mice injected with miR-185-transduced cells and treated with dasatinib (DA) survived much longer than recipients of control cells treated with DA (median survival 83 vs. 60 days, P=0.0018). Moreover, restoration of miR-185 expression combined with DA treatment greatly reduced in vivo long-term regenerative activity of LSCs from IM-nonresponders as compared to control cells treated with DA in NRG mice (<0.2% vs. 5% GFP+ patient cells in the BM, 25 weeks post-transplantation). We observed not only a marked reduction in GFP+CD34+ cells, but also a near elimination of GFP+CD34+CD38- LSCs that were transduced with miR-185 and treated with DA compared to control cells treated with DA, indicating that restored miR-185 expression combined with DA preferentially prevents the growth of patient-derived long-term leukemia-initiating cells in vivo. Several miRNA target genes were further identified by integrating miRNA expression profiles with gene expression profiles from the same patient samples using strand-specific RNA-seq. Based on three out of six prediction algorithms (mirBase, TargetScan, miRanda, tarBase, mirTarget2, and PicTar), PAK6, a serine/threonine-protein kinase, was found to be highly expressed in CD34+ IM-nonresponder cells compared to IM-responders (p<0.003), which correlated with reduced expression of miR-185 in these cells (p=0.0002). PAK6 was confirmed as a target gene of miR-185 by a luciferase reporter assay. Western blot analysis showed that restored miR-185 expression caused a marked decrease in protein levels of PAK6 in miR-185-transduced cells and suppression of PAK6 reduced viability of these cells. These results indicate that PAK6 is a critical target of miR-185, and that loss of miR-185 expression in CML may lead to up-regulation of PAK6, which in turn contributes to disease progression and drug resistance. Indeed, the use of a pre-clinically validated pan PAK inhibitor (PF-3758309) significantly inhibited the growth of IM-resistant cells and CD34+ IM-nonresponder cells and these effects could be enhanced by TKIs (p<0.05). Mechanistically, we observed that p-ERK and p-AKT were significantly reduced in PAK6 knockdown or miR185-restored IM-resistant cells in response to IM treatment. Thus, we infer that downregulation of PAK6 may sensitize TKI-resistant cells to TKI therapy through inhibition of the RAS/MAPK pathway. Taken together, PAK6, a novel target of miR-185, emerges as an attractive druggable target for combination therapy of TKI-resistant patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2863-2863
Author(s):  
Ralf Kronenwett ◽  
Elena Diaz-Blanco ◽  
Thorsten Graef ◽  
Ulrich Steidl ◽  
Slawomir Kliszewski ◽  
...  

Abstract In this study, we examined gene expression profiles of immunomagnetically enriched CD34+ cells from bone marrow (BM) of 9 patients with untreated CML in chronic phase and from 8 healthy volunteers using Affymetrix GeneChips. Additionally, in 3 patients CD34+ from peripheral blood (PB) were compared with those from BM. Differential expression of 12 candidate genes was corroborated by quantitative real-time RT-PCR. Following hybridization of labelled cRNA to Affymetrix GeneChips covering 8793 genes we used the statistical scripting language “R” for data analysis. For normalization a method of variance stabilization transformations was used. To identify significantly differentially expressed genes we used the Significance Analysis of Microarrays (SAM) algorithm. The intraindividual comparison of CD34+ cells from BM and PB in CML showed no differentially expressed genes which is different to normal CD34+ cells which had distinct gene expression patterns comparing circulating and sedentary CD34+ cells (Steidl et al., Blood, 2002). Comparing malignant BM CD34+ cells from CML with normal BM CD34+ cells 792 genes were significantly differentially expressed (fold change: &gt;1.3; q-value: &lt;0.03). 735 genes had a higher and 57 genes a lower expression in CML. Gene expression patterns reflected BCR-ABL-induced functional alterations such as increased cell-cycle and proteasome activity as well as decreased apoptosis. Downregulation of several genes involved in DNA repair and detoxification in CML might be the basis for DNA instability and progression to blast crisis. An interesting finding was an upregulation of fetal hemoglobin (Hb) components such as Hb gamma A and G in leukemic progenitor cells whereas no difference in adult Hb expression was observed suggesting an induction of fetal Hb synthesis in CML. Looking at genes involved in stem cell maintenance we found an upregulation of GATA2 and a reduced expression of proteins from the Wnt signalling pathway suggesting an increased self-renewal of CML hematopoietic stem cells compared to the normal counterpart. Moreover, several genes playing a role in ubiquitin-dependent protein catabolism and in fatty acid biosynthesis such as fatty acid synthase (FAS) were stronger expressed in CML. The functional role of FAS for leukemic cell growth was assessed in cell culture experiments. Incubation of the leukemic cell line K562 with the FAS inhibitor cerulenin (10 μg/ml) for 3 days resulted in death of 99% of cells suggesting that survival of leukemic cells depends upon endogenous fatty acid synthesis. In an attempt to find a specific gene expression pattern associated with response to imatinib therapy we divided the patients included in this study into two groups: maximal reduction of BCR-ABL transcript level &lt;3-log vs. &gt;3-log (major molecular remission) during therapy. Comparing pretherapeutic gene expression profiles of both groups we could not identify a pattern predictive for major molecular response. In conclusion, malignant CD34+ cells in CML have a specific gene expression pattern which seems not to be predictive for response to imatinib therapy.


Sign in / Sign up

Export Citation Format

Share Document