Intrinsic Drug Resistance in Multiple Myeloma to Doxorubicin Is Mediated by Soluble Factors

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5106-5106
Author(s):  
Daniel Sullivan ◽  
Jana L. Dawson ◽  
Elizabeth J. Ciaravino ◽  
Joel G. Turner

Abstract Drug resistance continues to be a major obstacle in the treatment of multiple myeloma. Data have shown that the bone marrow microenvironment plays an important role in drug resistance. Whether it is mediated through the physical interaction of stromal and tumor cells or by soluble factors, this communication is essential for survival by both normal and tumor cells. In the current study we use a transwell system to allow passage of soluble factors from high density (drug resistant) to low density (drug sensitive) human myeloma 8226 cells. In our model, 8226 cells translocate topoisomerase IIa (topo IIa) from the nucleus to the cytoplasm when at high density (3 × 106 cells/ml) for 16 hours, rendering the cells 38-fold resistant to doxorubicin (DOX), a topo II poison, relative to low density cells (see column 1 in graph A & B below). When low density (2 × 105 cells/ml) cells are separated from the high density cells by a 3.0 micron porous membrane for 16 hrs, we observed a 14-fold increase in resistance in the sensitive cells after a 1 hr exposure to DOX as compared to cells exposed to low density cells (see column 1 in graph C & D). Moreover, this increased resistance was less pronounced (2.5 fold) with topotecan (TPT), a topo I inhibitor, and no effect was seen when cis-platinum (CIS PLAT), a non-topo drug, was used in this system (see columns 2 & 3 in graph C & D), suggesting that topo IIa may be the specific target. This mechanism also appears to be time-driven, as the resistance increases over time in the sensitive cells during the course of the 16 hr exposure. In addition, drug resistance to DOX was observed when the sensitive cells were exposed to only “conditioned” media, but no effect was seen when exposed to high density cells in fresh media, suggesting that soluble factors are released from drug resistant cells into the microenvironment causing drug sensitive cells to acquire an increased ability to evade programmed cell death. Figure Figure

1989 ◽  
Vol 7 (4) ◽  
pp. 415-424 ◽  
Author(s):  
W S Dalton ◽  
T M Grogan ◽  
P S Meltzer ◽  
R J Scheper ◽  
B G Durie ◽  
...  

The B-cell neoplasms, multiple myeloma and non-Hodgkin's lymphoma, frequently become drug resistant, despite initial responses to chemotherapeutic drugs. Tumor cells from eight patients with clinically drug-refractory disease were evaluated by immuno-histochemical staining for monoclonal immunoglobulin (Ig) expression, nuclear proliferation antigen, P-glycoprotein (P-gly) expression, and other cellular antigens. P-gly was detected on tumor cells from six of eight patients with drug-resistant disease. Of the six patients with P-gly-positive tumors, five patients had advanced multiple myeloma and one had a drug-refractory non-Hodgkin's lymphoma. Cellular RNA analysis confirmed the over-expression of P-gly. In an effort to overcome drug resistance, a pilot study evaluated possible verapamil enhancement of chemotherapy in these eight patients. All patients had developed progressive disease while receiving a regimen containing vincristine and doxorubicin, and seven of eight patients had previously received continuous infusion vincristine and doxorubicin plus oral dexamethasone (VAD). At the time of progressive disease, continuous infusion verapamil was added to the VAD regimen. Three of the eight patients who were refractory to vincristine and doxorubicin alone responded when verapamil was added to VAD. The three patients who responded had P-gly-positive tumors. Verapamil increased the intracellular accumulation of doxorubicin and vincristine in vitro for both a P-gly-positive myeloma cell line and tumor cells from two patients with end-stage myeloma which over-expressed P-gly. The dose-limiting side effect associated with the addition of verapamil to chemotherapy was temporary impairment of cardiac function, manifest as hypotension and cardiac arrhythmia. We conclude that P-gly expression occurs in drug-refractory B-cell neoplasms and may contribute to the development of clinical drug resistance. However, other factors, such as the proliferative activity of the tumor, may also play a role in determining response to chemotherapy. The administration of verapamil along with VAD chemotherapy may partially circumvent drug resistance in patients whose tumors over-express P-gly.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jian Wu ◽  
Min Zhang ◽  
Omar Faruq ◽  
Eldad Zacksenhaus ◽  
Wenming Chen ◽  
...  

Abstract Background SMAD1, a central mediator in TGF-β signaling, is involved in a broad range of biological activities including cell growth, apoptosis, development and immune response, and is implicated in diverse type of malignancies. Whether SMAD1 plays an important role in multiple myeloma (MM) pathogenesis and can serve as a therapeutic target are largely unknown. Methods Myeloma cell lines and primary MM samples were used. Cell culture, cytotoxicity and apoptosis assay, siRNA transfection, Western blot, RT-PCR, Soft-agar colony formation, and migration assay, Chromatin immunoprecipitation (Chip), animal xenograft model studies and statistical analysis were applied in this study. Results We demonstrate that SMAD1 is highly expressed in myeloma cells of MM patients with advanced stages or relapsed disease, and is associated with significantly shorter progression-free and overall survivals. Mechanistically, we show that SMAD1 is required for TGFβ-mediated proliferation in MM via an ID1/p21/p27 pathway. TGF-β also enhanced TNFα-Induced protein 8 (TNFAIP8) expression and inhibited apoptosis through SMAD1-mediated induction of NF-κB1. Accordingly, depletion of SMAD1 led to downregulation of NF-κB1 and TNFAIP8, resulting in caspase-8-induced apoptosis. In turn, inhibition of NF-κB1 suppressed SMAD1 and ID1 expression uncovering an autoregulatory loop. Dorsomorphin (DM), a SMAD1 inhibitor, exerted a dose-dependent cytotoxic effect on drug-resistant MM cells with minimal cytotoxicity to normal hematopoietic cells, and further synergized with the proteasomal-inhibitor bortezomib to effectively kill drug-resistant MM cells in vitro and in a myeloma xenograft model. Conclusions This study identifies SMAD1 regulation of NF-κB1/TNFAIP8 and ID1-p21/p27 as critical axes of MM drug resistance and provides a potentially new therapeutic strategy to treat drug resistance MM through targeted inhibition of SMAD1.


2021 ◽  
Vol 8 ◽  
Author(s):  
Enshuang Xu ◽  
Mengxin Hu ◽  
Reidong Ge ◽  
Danning Tong ◽  
Yuying Fan ◽  
...  

Tamoxifen is the drug of choice for endocrine therapy of breast cancer. Its clinical use is limited by the development of drug resistance. There is increasing evidence that long non-coding RNAs (lncRNAs) are associated with tumor drug resistance. Therefore, we established two TAM-resistant cell lines, CHMpTAM and CHMmTAM. The different expression levels of lncRNA and miRNA in CHMmTAM and CHMm were screened by RNA sequencing, and the lncRNA-miRNA interactions were analyzed. LncRNA ENSCAFG42060 (lnc-42060) was found to be significantly upregulated in drug-resistant cells and tumor tissues. Further functional validation revealed that the knockdown of lnc-42060 inhibited proliferation, migration, clone formation, restoration of TAM sensitivity, and reduction of stem cell formation in drug-resistant cells, whereas overexpression of lnc-4206 showed opposite results. Bioinformatics and dual-luciferase reporter gene assays confirmed that lnc-42060 could act as a sponge for miR-204-5p, further regulating SOX4 expression activity and thus influencing tumor cell progression. In conclusion, we screened lncRNAs and miRNAs associated with TAM resistance in canine mammary gland tumor cells for the first time. lnc-42060 served as a novel marker that may be used as an important biomarker for future diagnosis and treatment.


Metabolites ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 289 ◽  
Author(s):  
Xun Chen ◽  
Shangwu Chen ◽  
Dongsheng Yu

Metabolic reprogramming is one of the hallmarks of tumors. Alterations of cellular metabolism not only contribute to tumor development, but also mediate the resistance of tumor cells to antitumor drugs. The metabolic response of tumor cells to various chemotherapy drugs can be analyzed by metabolomics. Although cancer cells have experienced metabolic reprogramming, the metabolism of drug resistant cancer cells has been further modified. Metabolic adaptations of drug resistant cells to chemotherapeutics involve redox, lipid metabolism, bioenergetics, glycolysis, polyamine synthesis and so on. The proposed metabolic mechanisms of drug resistance include the increase of glucose and glutamine demand, active pathways of glutaminolysis and glycolysis, promotion of NADPH from the pentose phosphate pathway, adaptive mitochondrial reprogramming, activation of fatty acid oxidation, and up-regulation of ornithine decarboxylase for polyamine production. Several genes are associated with metabolic reprogramming and drug resistance. Intervening regulatory points described above or targeting key genes in several important metabolic pathways may restore cell sensitivity to chemotherapy. This paper reviews the metabolic changes of tumor cells during the development of chemoresistance and discusses the potential of reversing chemoresistance by metabolic regulation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1593-1593
Author(s):  
Tanyel Kiziltepe ◽  
Kenji Ishitsuka ◽  
Teru Hideshima ◽  
Noopur Raje ◽  
Norihiko Shiraishi ◽  
...  

Abstract Multiple myeloma (MM) is currently an incurable hematological malignancy. A major reason for the failure of currently existing therapies is the chemotherapeutic resistance acquired by the MM cells upon treatment. Overexpression of glutathione S-transferases (GST) has been shown as one possible mechanism of anti-cancer drug resistance in a broad spectrum of tumor cells. JS-K (O2-(2,4-Dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate) belongs to a class of pro-drugs which are designed to release nitric oxide (NO) on reaction with GST. JS-K can possibly turn GST overexpression to the tumor’s disadvantage by (1) consuming intracellular GSH and preventing drug inactivation; and (2) by exposing tumor cells to high intracellular concentrations of NO. JS-K has potent in vitro and in vivo anti-leukemic activity. The purpose of the present study is to examine the biological effects of JS-K on human MM cells. We demonstrate that JS-K has significant in vitro cytotoxicity on MM cell lines, with an IC50 of 0.3-2 mM at 48 hours. JS-K also induces cytotoxicity on cell lines that are resistant to conventional chemotherapy (i.e., MM1R, RPMI-Dox40, RPMI-LR5, RPMI-MR20). Importantly, no cytotoxic effects of JS-K were detected on peripheral blood mononuclear cells (PBMNC) obtained from healthy volunteers at these doses. Moreover, JS-K could overcome the survival and growth advantages conferred by interleukin-6 (IL-6) and insulin-like growth factor-1 (IGF-1), or by adherence of MM cells to bone marrow stromal cells (BMSC). JS-K caused a transient G2/M arrest followed by apoptosis, as determined by flow cytometric analysis using PI, Annexin V and Apo2.7 staining. JS-K-induced apoptosis was associated with caspase 8, 7, 9 and 3 activation. Interestingly, Fas was upregulated by JS-K, suggesting the involvement of death receptor pathway in induction of apoptosis. JS-K also triggered Mcl-1 cleavage and Bcl-2 phosphorylation, suggesting the involvement of mitochondrial pathway. In addition, apoptosis inducing factor (AIF), endonuclease G (EndoG) and cytochrome c were released into the cytosol during apoptosis. Taken together, these findings suggest the involvement of both intrinsic and extrinsic apoptotic pathways in JS-K-induced apoptosis in MM cells. In summary, our studies demonstrate that JS-K induces apoptosis and overcomes in vitro drug resistance in MM cells. Therefore, JS-K is a novel compound which carries significant potential to be included in the repertoire of existing treatment modalities for MM. Ongoing studies are delineating the mechanism of action of JS-K to provide the preclinical rationale for combination therapies to overcome drug resistance and improve patient outcome.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4211-4211
Author(s):  
Shaker A. Mousa ◽  
Ghanshyam Patil ◽  
Abdelhadi Rebbaa

Abstract The development of resistance to chemotherapy represents an adaptive biological response by tumor cells that leads to treatment failure and patient relapse. During the course of their evolution (intrinsic resistance) or in response to chemotherapy (acquired resistance), tumor cells may undergo genetic alterations to possess a drug resistant phenotype. Dysregulation of membrane transport proteins and cellular enzymes, as well as altered susceptibility to commit to apoptosis are among the mechanisms that contribute to the genesis of acquired drug resistance. Recently, the development of approaches to prevent and/or to reverse this phenomenon has attracted special interest and a number of drug candidates have been identified. Despite strong effects observed for these candidates in vitro, however, most of them fail in vivo. In the present study, we have identified a novel small molecule inhibitor of dual NF-κB and oxidative stress pathways, OT-304, as a potential candidate to reverse drug resistance. Initial investigations indicate that this compound effectively inhibits proliferation of doxorubicin-sensitive and doxorubicin-resistant cells to the same extent, suggesting that it is capable of bypassing the development of drug resistance. Additional experiments reveal that OT-304 enhances cancer cell sensitivity to doxorubicin and to etoposide, particularly in cells characterized by the over-expression of the drug transporter P-glycoprotein. These findings suggest that either the expression/and or the function of P-glycoprotein could be affected by OT-304. In vivo studies using tumor xenografts in nude mice showed that OT-304 is also capable of preventing the growth of drug resistant cancer cells. This later finding further confirms the role of OT-304 as a drug resistance-reversing agent and warrants further pre-clinical and clinical investigation to determine its efficacy in treating aggressive tumors.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3944-3944
Author(s):  
Patricia Maiso ◽  
Yosra Aljawai ◽  
Antonio Sacco ◽  
Susanne B Breitkopf ◽  
Ilyas Sahin ◽  
...  

Abstract Abstract 3944 Introduction: Multiple Myeloma (MM) is the second most prevalent hematological malignancy and remains incurable, with a median survival of 3–7 years. However, despite the success of the new treatments, most patients still succumb to their disease. In about 20–25% of high-risk patients, MM progresses rapidly and does not respond to conventional therapies leading to rapid extramedullary disease and demise of these patients. One such regulator of dissemination and drug resistance is the dynamic process of oxygen deprivation or hypoxia. A number of studies show that hypoxia promotes neo-angiogenesis, cancer progression, epithelial-mesenchymal transition (EMT), acquisition of metastasis potential and stem-cell features, as well as resistance to therapy by activating adaptive transcriptional programs. Targeting hypoxia, and the metabolic pathways regulated by hypoxia in the tumor cells, could lead to novel opportunities for cancer therapy. Rapidly proliferating hypoxic cancer cells undergo a “metabolic switch” to anaerobic glycolysis. This altered energy metabolism has been shown to be associated with activated oncogenes and mutant tumor suppressors, which are more prevalent in patients with high-risk MM. Methods: The effect of hypoxia was analyzed in different MM cell lines (MM1S, RPMI8226, U266 and H929) in basal conditions and after the treatment with bortezomib, dexamethasone or melphalan. The cytotoxicity was analyzed by means of MTT assay. Cell cycle and apoptosis studies were performed by flow cytometry. Proteomic changes induced after treatment were analyzed under normoxic and hypoxic conditions by western-blotting. Gene expression profile of MM1S cells treated with bortezomib was compared in normoxia vs hypoxia using D-chip software. Genes with expression changes greater or lower than 2 fold in either direction were selected. HIF1A and HIF2A knockdowns were performed in MM1S using lentiviral vectors. For metabolite collection, samples were re-suspended using HPLC grade water for mass spectrometry and analyzed using a 5500 QTRAP hybrid triple quadrupole mass spectrometer (AB/SCIEX) coupled to a Prominence UFLC HPLC system (Shimadzu). A total of 254 endogenous water soluble metabolites were analyzed. Results: We observed that hypoxic conditions (12 hours at 0.7% of oxygen levels) suppressed the effect of melphalan and more significantly the effect of bortezomib. At the transcriptional level and protein level, we observed that cells treated with bortezomib in hypoxic conditions affected a large number of genes/proteins involved in cell cycle, cell death, glucose metabolism and the Wnt signaling pathway. Hypoxia blocked cell cycle progression, which was accompanied by p21, p53 and p57 up-regulation. In addition, apoptosis pathways were inhibited after exposure to hypoxia including inactivation of caspases 3, 8 and 9 and PARP cleavage. HIF1A and HIF2A knockdowns restore the effect of bortezomib in MM1S and increased the percentage of apoptosis in cells treated with bortezomib under hypoxic conditions. To further explore the role of hypoxia in the regulation of tumor metabolism, metabolomic studies were performed to characterize metabolic alterations following bortezomib treatment. This analysis revealed that hypoxic tumor cells treated with bortezomib show significant metabolic changes involving multiple pathways, the most significant of which are intermediates in glucose and, sucrose metabolism. Bortezomib treatment under hypoxic conditions was accompanied by a significant decrease in UDP-D-glucose, UDP-D-glucuronate, and glutathione disulfide. Conclusion: Hypoxic conditions are essential for drug resistance and glucose utilization. These data provide new therapeutic targets and associated biomarkers for the treatment of Multiple Myeloma. Disclosures: Ghobrial: Millennium: Advisory Board Other; Novartis: Advisory Board, Advisory Board Other.


2019 ◽  
Author(s):  
Shifeng Shi ◽  
Xin Huang ◽  
Xiao Ma ◽  
Xiaoyan Zhu ◽  
Qinxian Zhang

AbstractPurposeChemotherapy resistance of esophageal cancer is a key factor affecting the postoperative treatment of esophageal cancer. Among the media that transmit signals between cells, the exosomes secreted by tumor cells mediate information transmission between tumor cells, which can make sensitive cells obtain resistance. Although some cellular exosomes play an important role in tumor’s acquired drug resistance, the related action mechanism is still not explored specifically.MethodsTo elucidate this process, we constructed a cisplatin-resistant esophageal cancer cell line, and proved that exosomes conferring cellular resistance in esophageal cancer can promote cisplatin resistance in sensitive cells. Through high-throughput sequencing analysis of the exosome and of cells after stimulation by exosomes, we determined that the miRNA193 in exosomes conferring cellular resistance played a key role in sensitive cells acquiring resistance to cisplatin. In vitro experiments showed that miRNA193 can regulate the cell cycle of esophageal cancer cells and inhibit apoptosis, so that sensitive cells can acquire resistance to cisplatin. An in vivo experiment proved that miRNA193 can promote tumor proliferation through the exosomes, and provide sensitive cells with slight resistance to cisplatin.ResultsSmall RNA sequencing of exosomes showed that exosomes in drug-resistant cells have 189 up-regulated and 304 down-regulated miRNAs; transcriptome results showed that drug-resistant cells treated with drug-resistant cellular exosomes have 3446 high-expression and 1709 low-expression genes; correlation analysis showed that drug-resistant cellular exosomes mainly affect the drug resistance of sensitive cells through paths such as cytokine–cytokine receptor interaction, and the VEGF and Jak-STAT signaling pathways; miRNA193, one of the high-expression miRNAs in drug-resistant cellular exosomes, can promote drug resistance by removing cisplatin’s inhibition of the cell cycle of sensitive cells.ConclusionSensitive cells can become resistant to cisplatin through acquired drug-resistant cellular exosomes, and miRNA193 can make tumor cells acquire cisplatin resistance by regulating the cell cycle.


Sign in / Sign up

Export Citation Format

Share Document