scholarly journals Metabolic Reprogramming of Chemoresistant Cancer Cells and the Potential Significance of Metabolic Regulation in the Reversal of Cancer Chemoresistance

Metabolites ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 289 ◽  
Author(s):  
Xun Chen ◽  
Shangwu Chen ◽  
Dongsheng Yu

Metabolic reprogramming is one of the hallmarks of tumors. Alterations of cellular metabolism not only contribute to tumor development, but also mediate the resistance of tumor cells to antitumor drugs. The metabolic response of tumor cells to various chemotherapy drugs can be analyzed by metabolomics. Although cancer cells have experienced metabolic reprogramming, the metabolism of drug resistant cancer cells has been further modified. Metabolic adaptations of drug resistant cells to chemotherapeutics involve redox, lipid metabolism, bioenergetics, glycolysis, polyamine synthesis and so on. The proposed metabolic mechanisms of drug resistance include the increase of glucose and glutamine demand, active pathways of glutaminolysis and glycolysis, promotion of NADPH from the pentose phosphate pathway, adaptive mitochondrial reprogramming, activation of fatty acid oxidation, and up-regulation of ornithine decarboxylase for polyamine production. Several genes are associated with metabolic reprogramming and drug resistance. Intervening regulatory points described above or targeting key genes in several important metabolic pathways may restore cell sensitivity to chemotherapy. This paper reviews the metabolic changes of tumor cells during the development of chemoresistance and discusses the potential of reversing chemoresistance by metabolic regulation.

2019 ◽  
Author(s):  
Shifeng Shi ◽  
Xin Huang ◽  
Xiao Ma ◽  
Xiaoyan Zhu ◽  
Qinxian Zhang

AbstractPurposeChemotherapy resistance of esophageal cancer is a key factor affecting the postoperative treatment of esophageal cancer. Among the media that transmit signals between cells, the exosomes secreted by tumor cells mediate information transmission between tumor cells, which can make sensitive cells obtain resistance. Although some cellular exosomes play an important role in tumor’s acquired drug resistance, the related action mechanism is still not explored specifically.MethodsTo elucidate this process, we constructed a cisplatin-resistant esophageal cancer cell line, and proved that exosomes conferring cellular resistance in esophageal cancer can promote cisplatin resistance in sensitive cells. Through high-throughput sequencing analysis of the exosome and of cells after stimulation by exosomes, we determined that the miRNA193 in exosomes conferring cellular resistance played a key role in sensitive cells acquiring resistance to cisplatin. In vitro experiments showed that miRNA193 can regulate the cell cycle of esophageal cancer cells and inhibit apoptosis, so that sensitive cells can acquire resistance to cisplatin. An in vivo experiment proved that miRNA193 can promote tumor proliferation through the exosomes, and provide sensitive cells with slight resistance to cisplatin.ResultsSmall RNA sequencing of exosomes showed that exosomes in drug-resistant cells have 189 up-regulated and 304 down-regulated miRNAs; transcriptome results showed that drug-resistant cells treated with drug-resistant cellular exosomes have 3446 high-expression and 1709 low-expression genes; correlation analysis showed that drug-resistant cellular exosomes mainly affect the drug resistance of sensitive cells through paths such as cytokine–cytokine receptor interaction, and the VEGF and Jak-STAT signaling pathways; miRNA193, one of the high-expression miRNAs in drug-resistant cellular exosomes, can promote drug resistance by removing cisplatin’s inhibition of the cell cycle of sensitive cells.ConclusionSensitive cells can become resistant to cisplatin through acquired drug-resistant cellular exosomes, and miRNA193 can make tumor cells acquire cisplatin resistance by regulating the cell cycle.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Huakan Zhao ◽  
Yongsheng Li

AbstractMetabolic reprogramming with heterogeneity is a hallmark of cancer and is at the basis of malignant behaviors. It supports the proliferation and metastasis of tumor cells according to the low nutrition and hypoxic microenvironment. Tumor cells frantically grab energy sources (such as glucose, fatty acids, and glutamine) from different pathways to produce a variety of biomass to meet their material needs via enhanced synthetic pathways, including aerobic glycolysis, glutaminolysis, fatty acid synthesis (FAS), and pentose phosphate pathway (PPP). To survive from stress conditions (e.g., metastasis, irradiation, or chemotherapy), tumor cells have to reprogram their metabolism from biomass production towards the generation of abundant adenosine triphosphate (ATP) and antioxidants. In addition, cancer cells remodel the microenvironment through metabolites, promoting an immunosuppressive microenvironment. Herein, we discuss how the metabolism is reprogrammed in cancer cells and how the tumor microenvironment is educated via the metabolic products. We also highlight potential metabolic targets for cancer therapies.


2020 ◽  
Vol 27 (24) ◽  
pp. 3984-4001 ◽  
Author(s):  
Camille Attané ◽  
Delphine Milhas ◽  
Andrew J. Hoy ◽  
Catherine Muller

Metabolic reprogramming represents an important hallmark of cancer cells. Besides de novo fatty acid synthesis, it is now clear that cancer cells can acquire Fatty Acids (FA) from tumor-surrounding adipocytes to increase their invasive capacities. Indeed, adipocytes release FA in response to tumor secreted factors that are transferred to tumor cells to be either stored as triglycerides and other complex lipids or oxidized in mitochondria. Like all cells, FA can be released over time from triglyceride stores through lipolysis and then oxidized in mitochondria in cancer cells. This metabolic interaction results in specific metabolic remodeling in cancer cells, and underpins adipocyte stimulated tumor progression. Lipolysis and fatty acid oxidation therefore represent novel targets of interest in the treatment of cancer. In this review, we summarize the recent advances in our understanding of the metabolic reprogramming induced by adipocytes, with a focus on breast cancer. Then, we recapitulate recent reports studying the effect of lipolysis and fatty acid oxidation inhibitors on tumor cells and discuss the interest to target these metabolic pathways as new therapeutic approaches for cancer.


Autophagy ◽  
2021 ◽  
Author(s):  
Michael S. Dahabieh ◽  
Fan Huang ◽  
Christophe Goncalves ◽  
Raúl Ernesto Flores González ◽  
Sathyen Prabhu ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2719
Author(s):  
Alba Loras ◽  
Cristina Segovia ◽  
José Luis Ruiz-Cerdá

Bladder cancer (BC) represents a clinical, social, and economic challenge due to tumor-intrinsic characteristics, limitations of diagnostic techniques and a lack of personalized treatments. In the last decade, the use of liquid biopsy has grown as a non-invasive approach to characterize tumors. Moreover, the emergence of omics has increased our knowledge of cancer biology and identified critical BC biomarkers. The rewiring between epigenetics and metabolism has been closely linked to tumor phenotype. Chromatin remodelers interact with each other to control gene silencing in BC, but also with stress-inducible factors or oncogenic signaling cascades to regulate metabolic reprogramming towards glycolysis, the pentose phosphate pathway, and lipogenesis. Concurrently, one-carbon metabolism supplies methyl groups to histone and DNA methyltransferases, leading to the hypermethylation and silencing of suppressor genes in BC. Conversely, α-KG and acetyl-CoA enhance the activity of histone demethylases and acetyl transferases, increasing gene expression, while succinate and fumarate have an inhibitory role. This review is the first to analyze the interplay between epigenome, metabolome and cell signaling pathways in BC, and shows how their regulation contributes to tumor development and progression. Moreover, it summarizes non-invasive biomarkers that could be applied in clinical practice to improve diagnosis, monitoring, prognosis and the therapeutic options in BC.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5792
Author(s):  
Tiantian Tan ◽  
Jie Li ◽  
Ruhua Luo ◽  
Rongrong Wang ◽  
Liyan Yin ◽  
...  

Malignant tumors are life-threatening, and chemotherapy is one of the common treatment methods. However, there are often many factors that contribute to the failure of chemotherapy. The multidrug resistance of cancer cells during chemotherapy has been reported, since tumor cells’ sensitivity decreases over time. To overcome these problems, extensive studies have been conducted to reverse drug resistance in tumor cells. Elemene, an extract of the natural drug Curcuma wenyujin, has been found to reverse drug resistance and sensitize cancer cells to chemotherapy. Mechanisms by which elemene reverses tumor resistance include inhibiting the efflux of ATP binding cassette subfamily B member 1(ABCB1) transporter, reducing the transmission of exosomes, inducing apoptosis and autophagy, regulating the expression of key genes and proteins in various signaling pathways, blocking the cell cycle, inhibiting stemness, epithelial–mesenchymal transition, and so on. In this paper, the mechanisms of elemene’s reversal of drug resistance are comprehensively reviewed.


2021 ◽  
Vol 8 ◽  
Author(s):  
Enshuang Xu ◽  
Mengxin Hu ◽  
Reidong Ge ◽  
Danning Tong ◽  
Yuying Fan ◽  
...  

Tamoxifen is the drug of choice for endocrine therapy of breast cancer. Its clinical use is limited by the development of drug resistance. There is increasing evidence that long non-coding RNAs (lncRNAs) are associated with tumor drug resistance. Therefore, we established two TAM-resistant cell lines, CHMpTAM and CHMmTAM. The different expression levels of lncRNA and miRNA in CHMmTAM and CHMm were screened by RNA sequencing, and the lncRNA-miRNA interactions were analyzed. LncRNA ENSCAFG42060 (lnc-42060) was found to be significantly upregulated in drug-resistant cells and tumor tissues. Further functional validation revealed that the knockdown of lnc-42060 inhibited proliferation, migration, clone formation, restoration of TAM sensitivity, and reduction of stem cell formation in drug-resistant cells, whereas overexpression of lnc-4206 showed opposite results. Bioinformatics and dual-luciferase reporter gene assays confirmed that lnc-42060 could act as a sponge for miR-204-5p, further regulating SOX4 expression activity and thus influencing tumor cell progression. In conclusion, we screened lncRNAs and miRNAs associated with TAM resistance in canine mammary gland tumor cells for the first time. lnc-42060 served as a novel marker that may be used as an important biomarker for future diagnosis and treatment.


2020 ◽  
Author(s):  
Jinyan Zhao ◽  
Weilan Lan ◽  
Jun Peng ◽  
Bin Guan ◽  
Jie Liu ◽  
...  

Abstract Background: Multidrug resistance (MDR) is a critical reason of cancer chemotherapy failure. Babao dan (BBD) is a classical and famous traditional Chinese patent medicine, which has been reported to has anti-gastric cancer activity. However, the roles and molecular mechanisms of the reversal of MDR of gastric cancer by BBD have not been well described until now. Methods: SGC-7901 and SGC-7901/DDP cells were used in this study, and drug resistance and evaluation of the reversal effect of BBD was determined using MTT assays in SGC7901/DDP cells. Doxorubicin (DOX) and Rhodamin123 (Rho123) staining was performed to assess BBD effects on drug accumulation and efflux of drug-resistant gastric cancer cells. Cell apoptosis was directly assessed using DAPI staining. Apoptotic and dead cells were detected by flow cytometry after staining with Annexin V-FITC and propidium iodide (PI). Cyto-ID assays were performed to examine cellular autophagy. Changes in cell protein expression of ABCB1, ABCC1, ABCG2, Bax, Bcl-2, caspase-3, cleaved-caspase-3, LC3, p62, Beclin1 and the PI3K/AKT/mTOR pathway were detected by Western blot. Inhibition of autophagy with 3-MA, chloroquine (CQ) and PI3K antagonist (LY294002) or agonist (740Y-P) , uncovered a role for the potentially downregulated signaling pathway, PI3K/AKT/mTOR.Results: The SGC7901/DDP cell line exhibited multi-drug resistance to DDP, DOX and 5-fluorouracil (5-FU) and the drug resistant index (RI) of DDP, DOX and 5-FU were 1.86, 1.50 and 47.70, respectively. BBD reversed the MDR of SGC7901/DDP cells by increasingDOX accumulation, reducing Rh123 efflux and down-regulating the expression of ABCB1, ABCC1, ABCG2. Furthermore, BBD induced apoptosis in SGC7901/DDP cells through regulating caspase-3, cleaved-caspase-3, Bax and Bcl-2. Moreover, BBD induced autophagy in DDP-resistant gastric cancer cells via regulating p62, LC3 and Beclin1. Pathway analyses suggested BBD may inhibit PI3K/AKT/mTOR pathway activity and subsequent autophagy induction. Conclusions: BBD may reverse the MDR of gastric cancer cells, and promote autophagic death via inactivation of the PI3K/AKT/mTOR signaling pathway.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
WeiHua Yin ◽  
GuPing Zhong ◽  
HuiZhen Fan ◽  
HongMei Xia

Fluorouracil (5-FU) and oxaliplatin (L-OHP) are the most commonly used chemotherapy drugs for colorectal cancer, though resistance is common. Compound Sophora injection is a traditional Chinese medicine that can protect the liver against oxidation, improve immunity, and enhance sensitivity to chemotherapy; it may have an effect of reversing resistance in 5-FU- and L-OHP-resistant gastric cancer cells (5-FU/SW480 and L-OHP/SW480, respectively). A concentration gradient experiment was performed to identify a nontoxic dose of compound Sophora injection. 5-FU/SW480 and L-OHP/SW480 cells were treated with the nontoxic dose of compound radix Sophorae injection for 48 h, and changes in drug resistance to 5-FU and L-OHP were detected. Alterations in apoptosis and the cell cycle were assessed, as were the mRNA and protein levels of permeability glycoprotein (P-gp), annexin A1 (ANXA1), and ATP-binding cassette superfamily G member 2 (ABCG2). Flow cytometry showed a reduction in the number of cells in the G1 phase and an increase of cells in the S phase (P<0.05). mRNA and protein expression of P-gp and ABCG2 was significantly higher in 5-FU/SW480 and L-OHP/SW480 cell lines, and ANXA1 expression decreased significantly (P<0.05). Compound Sophora injection can reverse the drug resistance of 5-FU/SW480 and L-OHP/SW480 cell lines to 5-FU and L-OHP, respectively, possibly through a mechanism involving reduced expression of P-gp and ABCG2 but enhanced expression of ANXA1, which is the basis for the identification of clinical drug resistance in colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document