Intersecting Chemical Genomic and Genetic Screens Identifies Glycogen Synthase Kinase-3α (GSK-3α) as a Modulator of Differentiation In Acute Myeloid Leukemia

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1000-1000
Author(s):  
Versha Banerji ◽  
Kenneth N. Ross ◽  
Loretta S. Li ◽  
Stacey M. Frumm ◽  
Anna C. Schinzel ◽  
...  

Abstract Abstract 1000 The treatment of acute myeloid leukemia (AML) poses a vexing challenge despite an improved understanding of its molecular pathogenesis. A two-hit theory has been proposed for the pathogenesis of AML where the first hit imparts a proliferation defect and the second a block in differentiation. Drug discovery efforts for AML, however, have largely focused on the proliferation defect. Using the intersection of chemical biology and high-throughput genetic screening we sought to identify new AML differentiation targets by measuring the induction of a complex gene expression signature of myeloid maturation. We performed two independent small molecule library screens and a high-throughput shRNA screen for perturbations that induce differentiation in AML cells. We measured this differentiation signature using the previously described gene expression-based high-throughput screening (GE-HTS) approach in which gene expression signatures serve as surrogates for different biological states. Glycogen Synthase Kinase-3 (GSK-3) emerged as a target at the intersection of these three screens. GSK-3 is a multifunctional serine threonine kinase involved in diverse cellular processes including differentiation, signal transduction, cell cycle regulation and proliferation, with an emerging role in human leukemia. We demonstrate that the GSK-3 inhibitors scoring in the primary screens indeed induce the differentiation signature with a dose-response in AML cell lines. In order to further validate GSK-3 as a target, we extended testing to lithium chloride and SB216763, two commonly used GSK-3 inhibitors not in the original screens. Both of these molecules induced AML differentiation as measured by gene expression and morphological changes in multiple AML cell lines and in primary patient blasts in vitro. GSK-3 is expressed as two highly homologous but non-redundant isoforms, GSK-3α and GSK-3β, with small molecule inhibitors non-selectively reported to target both. In order to further validate the findings of the small molecule library screens, we performed a high-throughput shRNA screen targeting the human kinome for shRNAs that induce differentiation. Multiple hairpins against GSK-3α scored. In secondary testing of four AML cell lines, we found that genetic loss of GSK-3α induced differentiation as measured by induction of the complex gene expression signature, alterations in genome-wide expression, and morphological changes associated with maturation. Moreover, colony formation in methylcellulose was impeded. These effects could be rescued with a GSK-3α cDNA immune to the effects of the shRNA, further supporting the on-target activity of the hairpin. In contrast, GSK-3β-directed hairpins induced minimal differentiation. We next extended testing to an in vivo U937 orthotopic model of AML. While pan-GSK-3 inhibition with lithium chloride treatment did not demonstrate efficacy in this model, inhibition of GSK-3α with shRNA attenuated development of disease compared to an shRNA control. We hypothesize that the rise in β-catenin with pan-inhibition of GSK-3 may attenuate the response to lithium in vivo. In contrast, isolated knockdown of GSK-3α does not induce β-catenin. While much of the prior cancer literature has focused on the role of GSK-3β in human malignancy, these studies suggest a role for GSK-3α in AML differentiation and support a role for GSK-3α-directed targeted therapy. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4811-4811
Author(s):  
Joanna S. Yi ◽  
Alex Federation ◽  
Jun Qi ◽  
Sirano Dhe-Paganon ◽  
Michael Hadler ◽  
...  

Abstract Cooperation between several epigenetic modulators defines MLL-rearranged leukemia as an epigenomic-driven cancer. Wild type MLL catalyzes trimethylation of lysine 4 on histone 3 from the methyl donor S-adenosylmethionine (SAM) at homeobox and other genes important for hematopoiesis, promoting their expression during development. However, in MLL-rearrangements, its methyltransferase domain is ubiquitously lost and replaced with >70 known fusion partners. Many of these fusion partners recruit DOT1L, the only known SAM-dependent lysine methyltransferase responsible for the methylation of lysine 79 of histone 3 (H3K79)—a mark associated with most actively transcribed genes. Therefore, the recruitment of DOT1L by MLL fusion partners to MLL-target genes leads to aberrant H3K79 hypermethylation at these loci, resulting in inappropriate gene expression and leukemogenesis. DOT1L as a therapeutic target in MLL has been genetically validated by several groups, leading to the development of SAM-competitive small molecule inhibitors of DOT1L. These inhibitors exhibit excellent biochemical activity and selectivity, yet have delayed cellular activity and needing relatively high doses, with viability effects requiring 7-10 days and EC50s for H3K79 methylation depletion of 1-3 μM in cell lines. In animal studies, this translates to a modest survival benefit while requiring high doses through continuous osmotic subcutaneous infusion. Further optimization of DOT1L inhibitors is therefore needed. To date, development of DOT1L inhibitors has been slow, perhaps related to inadequacy of discovery chemistry assay technologies. All biochemical assays are radioactivity-based and are not miniaturizeable; low-throughput and delayed cellular effects of DOT1L inhibition all hamper the discovery of improved inhibitors. Therefore a pressing need towards improved DOT1L inhibitor discovery is a robust, accessible, and rapid profiling platform. Toward this goal, we synthesized both FITC- and biotin-tagged DOT1L probe ligands. We confirmed by structural studies that binding of the probes were similar to our previously published inhibitor, depleted H3K79 methylation, and had antiproliferative effects in MLL-rearranged cell lines. We then utilized the probes to devise two non-radioactive, orthogonal biochemical assays to competitively profile putative inhibitors: one employing bead-based, proxmity fluorescence technology and the second using fluorescence polarization technology. These assays are robust and adaptable to high-throughput screening. We also designed a miniaturizable high-content imaging, immunofluorescence-based assay to assess the effect of DOT1L inhibitors on H3K79 methylation, reporting cellular IC50s after just four days of treatment. These three assays were validated against three known DOT1L inhibitors of different potencies, accurately differentiating between the compounds. Together, these orthogonal assays define an accessible platform capability to discover and optimize DOT1L inhibitors. Our platform rank-ordered a library of SAM derivatives that we synthesized, indicating that large substituents off the SAM base does not affect DOT1L binding. We also explored other features of the SAM core structure, identifying several chlorinated probes that had increased cellular potency (IC50 values ~10nM) relative to the initial compounds published, without losing specificity for DOT1L. The inhibitory effect on MLL-target gene expression correlated to the H3K79me2 decrease reported in high content assay, validating that our high-content assay accurately reports on downstream biology seen later in treatment. And as expected, the high-content potencies of our chlorinated DOT1L probes also correlated to increased anti-proliferative effect in MLL cells. Overall, we utilized chemistry, biology, and chemical biology tools to develop this profiling platform capability for more rapid discovery and optimization of small molecule DOT1L inhibitors. These assays can additionally be used to screen for non-SAM competitive inhibitors in high-throughput fashion. Furthermore, the DOT1L inhibitors and probes synthesized here (available as open-source tools) are useful in deeper mechanistic studies of the DOT1L complex and its role in MLL. Disclosures Armstrong: Epizyme: Consultancy.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ann Jeffers ◽  
Wenyi Qin ◽  
Shuzi Owens ◽  
Kathleen B. Koenig ◽  
Satoshi Komatsu ◽  
...  

AbstractIdiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with a median survival of 3 years after diagnosis. Although the etiology of IPF is unknown, it is characterized by extensive alveolar epithelial cell apoptosis and proliferation of myofibroblasts in the lungs. While the origins of these myofibroblast appear to be diverse, fibroblast differentiation contributes to expansion of myofibroblasts and to disease progression. We found that agents that contribute to neomatrix formation and remodeling in pulmonary fibrosis (PF); TGF-β, Factor Xa, thrombin, plasmin and uPA all induced fibroblast/myofibroblast differentiation. These same mediators enhanced GSK-3β activation via phosphorylation of tyrosine-216 (p-Y216). Inhibition of GSK-3β signaling with the novel inhibitor 9-ING-41 blocked the induction of myofibroblast markers; α-SMA and Col-1 and reduced morphological changes of myofibroblast differentiation. In in vivo studies, the progression of TGF-β and bleomycin mediated PF was significantly attenuated by 9-ING-41 administered at 7 and 14 days respectively after the establishment of injury. Specifically, 9-ING-41 treatment significantly improved lung function (compliance and lung volumes; p < 0.05) of TGF-β adenovirus treated mice compared to controls. Similar results were found in mice with bleomycin-induced PF. These studies clearly show that activation of the GSK-3β signaling pathway is critical for the induction of myofibroblast differentiation in lung fibroblasts ex vivo and pulmonary fibrosis in vivo. The results offer a strong premise supporting the continued investigation of the GSK-3β signaling pathway in the control of fibroblast-myofibroblast differentiation and fibrosing lung injury. These data provide a strong rationale for extension of clinical trials of 9-ING-41 to patients with IPF.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 209-209 ◽  
Author(s):  
Cynthia K. Hahn ◽  
Kenneth N. Ross ◽  
Rose M. Kakoza ◽  
Steven A. Carr ◽  
Jinyan Du ◽  
...  

Abstract One of the challenges of phenotype-based small molecule screening has been the difficulty of protein target identification for newly discovered compounds. For example, we previously performed a gene expression-based small molecule library screen, which identified gefitinib, an epidermal growth factor receptor (EGFR) inhibitor, as an inducer of acute myeloid leukemia (AML) differentiation in cell lines and primary patient cells. Neither EGFR transcript nor protein is expressed in the tested AML cell lines, thus precluding inhibition of this kinase as the mechanism of AML differentiation. However, because multiple EGFR inhibitors induce this phenotype, we hypothesize that a shared off-target kinase is the target in AML differentiation. In order to identify candidate gefitinib targets of AML differentiation, we utilized a proteomics method: peptide immunoprecipitation-HPLC-mass spectrometry. This approach enriches for phospho-tyrosine peptides with immunoprecipitation (IP) after enzyme digestion. In contrast to IP at the protein level, the final mixture following peptide-IP contains primarily phospho-tyrosine-containing peptides. We treated the AML cell line HL-60 with gefitinib versus vehicle and then identified peptide sites with loss of phosphorylation with gefitinib treatment. Spleen tyrosine kinase (Syk) was identified as one of the only kinases with loss of phosphorylation post treatment. Syk is a nonreceptor tyrosine kinase, important in normal B-cell differentiation, and implicated in malignancies such as myelodysplastic syndrome and lymphoma. We first confirmed with IP western immunoblotting the inhibition of Syk phosphorylation with gefitinib treatment in HL-60 cells. We next confirmed with both pharmacological inhibition and genetic loss of Syk the induction of differentiation in the AML cell lines HL-60 and U937. Numerous determinants of myeloid maturation were tested: a complex differentiation gene expression signature, cellular morphology, cell surface proteins CD11b and CD14 expression, and nitro-blue tetrazolium (NBT) reduction, a functional assay for myeloid differentiation. Two reported pharmacological inhibitors of Syk scored positive on all measurements of differentiation. Furthermore, the shRNA construct inducing the most complete loss of Syk also scored the highest on all measurements of differentiation. The most convincing data that Syk is the true target of these inhibitors would be the identification of an inhibitor resistant Syk mutant, analogous to BCR-ABL or c-Kit mutants that confer imatinib resistance. To this end, a Syk random mutagenesis screen is ongoing. In summary, these data identify Syk as a strong candidate target of gefitinib, demonstrate that inhibition of Syk can induce AML differentiation, and identify Syk as a potential target for AML differentiation therapy.


2019 ◽  
Vol 11 (503) ◽  
pp. eaau0164 ◽  
Author(s):  
Xin Tang ◽  
Jesse Drotar ◽  
Keji Li ◽  
Cullen D. Clairmont ◽  
Anna Sophie Brumm ◽  
...  

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the methyl CpG binding protein 2 (MECP2) gene. There are currently no approved treatments for RTT. The expression of K+/Cl− cotransporter 2 (KCC2), a neuron-specific protein, has been found to be reduced in human RTT neurons and in RTT mouse models, suggesting that KCC2 might play a role in the pathophysiology of RTT. To develop neuron-based high-throughput screening (HTS) assays to identify chemical compounds that enhance the expression of the KCC2 gene, we report the generation of a robust high-throughput drug screening platform that allows for the rapid assessment of KCC2 gene expression in genome-edited human reporter neurons. From an unbiased screen of more than 900 small-molecule chemicals, we have identified a group of compounds that enhance KCC2 expression termed KCC2 expression–enhancing compounds (KEECs). The identified KEECs include U.S. Food and Drug Administration–approved drugs that are inhibitors of the fms-like tyrosine kinase 3 (FLT3) or glycogen synthase kinase 3β (GSK3β) pathways and activators of the sirtuin 1 (SIRT1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) pathways. Treatment with hit compounds increased KCC2 expression in human wild-type (WT) and isogenic MECP2 mutant RTT neurons, and rescued electrophysiological and morphological abnormalities of RTT neurons. Injection of KEEC KW-2449 or piperine in Mecp2 mutant mice ameliorated disease-associated respiratory and locomotion phenotypes. The small-molecule compounds described in our study may have therapeutic effects not only in RTT but also in other neurological disorders involving dysregulation of KCC2.


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 610
Author(s):  
Robin Park ◽  
Andrew L. Coveler ◽  
Ludimila Cavalcante ◽  
Anwaar Saeed

Glycogen synthase kinase-3 beta is a ubiquitously and constitutively expressed molecule with pleiotropic function. It acts as a protooncogene in the development of several solid tumors including pancreatic cancer through its involvement in various cellular processes including cell proliferation, survival, invasion and metastasis, as well as autophagy. Furthermore, the level of aberrant glycogen synthase kinase-3 beta expression in the nucleus is inversely correlated with tumor differentiation and survival in both in vitro and in vivo models of pancreatic cancer. Small molecule inhibitors of glycogen synthase kinase-3 beta have demonstrated therapeutic potential in pre-clinical models and are currently being evaluated in early phase clinical trials involving pancreatic cancer patients with interim results showing favorable results. Moreover, recent studies support a rationale for the combination of glycogen synthase kinase-3 beta inhibitors with chemotherapy and immunotherapy, warranting the evaluation of novel combination regimens in the future.


2008 ◽  
Vol 197 (2) ◽  
pp. 277-285 ◽  
Author(s):  
Georgia Frangioudakis ◽  
Gregory J Cooney

The aim of this study was to examine the effect of an acute, physiological increase in plasma free fatty acid (FFA) on initial signalling events in rat red quadriceps muscle (RQ). Male Wistar rats received a 7% glycerol (GLYC) or 7% Intralipid/heparin (LIP) infusion for 3 h, after which they were either killed or infused with insulin at a rate of 0.5 U/kg per h for 5 min, before RQ collection. Plasma FFAs were elevated to ∼2 mM in the LIP rats only. Insulin-stimulated insulin receptor (IR) Tyr1162/Tyr1163 phosphorylation and IR substrate (IRS)-1 Tyr612 phosphorylation were increased at least twofold over basal in GLYC rats with insulin and this increase was not significantly impaired in the LIP rats. However, there was no insulin-stimulated protein kinase B (PKB) Ser473 or glycogen synthase kinase (GSK)-3β Ser9 phosphorylation in the LIP rats, compared with at least a twofold increase over basal in GLYC rats for both proteins. c-Jun N-terminal kinase, inhibitor of κ kinase β and inhibitor of nuclear factor-κB phosphorylation and total protein expression, as well as Ser307-IRS-1 phosphorylation, were not altered by lipid infusion compared with GLYC infusion. These data indicate that acute, physiological elevation in FFA has a greater impact on insulin signalling downstream of IR and IRS-1, at the level of PKB and GSK-3β, and that under these conditions stress signalling pathways are not significantly stimulated. Decreased PKB and GSK-3β phosphorylation in RQ may therefore be primary determinants of the reduced insulin action observed in situations of acute FFA oversupply.


1994 ◽  
Vol 107 (2) ◽  
pp. 363-371
Author(s):  
Q.L. Lu ◽  
A.M. Hanby ◽  
M.A. Nasser Hajibagheri ◽  
S.E. Gschmeissner ◽  
P.J. Lu ◽  
...  

bcl-2 gene expression confers a survival advantage by preventing cells from entering apoptosis. In contrast to the previously described cytoplasmic localization of Bcl-2 in epithelial cells in vivo, in this study we have demonstrated, in a series of human epithelial cell lines, that Bcl-2 also localizes to mitotic nuclei. Both immunocytochemical and immunoelectron microscopical examinations localize this protein to nuclei and in particular to chromosomes. Nuclear Bcl-2 expression in these cell lines is correlated with the cell cycle. There is relatively strong expression during mitosis, most intense during prophase and metaphase, declining in telophase and then the protein becomes undetectable soon after separation of the two daughter cells. The expression and distribution of Bcl-2 is influenced by treatment with excessive thymidine. These results indicate that Bcl-2 may protect the cells from apoptosis occurring during mitosis and suggest a possible role for the protein in cell immortalization.


2008 ◽  
Vol 295 (5) ◽  
pp. E1142-E1151 ◽  
Author(s):  
Helen Cho ◽  
Shawn C. Black ◽  
David Looper ◽  
Manli Shi ◽  
Dawn Kelly-Sullivan ◽  
...  

c-Jun NH2-terminal kinase (JNK) plays an important role in insulin resistance; however, identification of pharmacologically potent and selective small molecule JNK inhibitors has been limited. Compound A has a cell IC50 of 102 nM and is at least 100-fold selective against related kinases and 27-fold selective against glycogen synthase kinase-3β and cyclin-dependent kinase-2. In C57BL/6 mice, compound A reduced LPS-mediated increases in both plasma cytokine levels and phosphorylated c-Jun in adipose tissue. Treatment of mice fed a high-fat diet with compound A for 3 wk resulted in a 13.1 ± 1% decrease in body weight and a 9.3 ± 1.5% decrease in body fat, compared with a 6.6 ± 2.1% increase in body weight and a 6.7 ± 2.1% increase in body fat in vehicle-treated mice. Mice pair fed to those that received compound A exhibited a body weight decrease of 7 ± 1% and a decrease in body fat of 1.6 ± 1.3%, suggesting that reductions in food intake could not account solely for the reductions in adiposity observed. Compound A dosed at 30 mg/kg for 13 days in high-fat fed mice resulted in a significant decrease in phosphorylated c-Jun in adipose tissue accompanied by a decrease in weight and reductions in glucose and triglycerides and increases in insulin sensitivity to levels comparable with those in lean control mice. The ability of compound A to reduce the insulin-stimulated phosphorylation of insulin receptor substrate-1 (IRS-1) von Ser307 and partially reverse the free fatty acid inhibition of glucose uptake in 3T3L1 adipocytes, suggests that enhancement of insulin signaling in addition to weight loss may contribute to the effects of compound A on insulin sensitization in vivo. Pharmacological inhibition of JNK using compound A may therefore offer an effective therapy for type 2 diabetes mediated at least in part via weight reduction.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5391
Author(s):  
Zheng Liu ◽  
Ming Bian ◽  
Qian-Qian Ma ◽  
Zhuo Zhang ◽  
Huan-Huan Du ◽  
...  

A series of novel synthetic substituted benzo[d]oxazole-based derivatives (5a–5v) exerted neuroprotective effects on β-amyloid (Aβ)-induced PC12 cells as a potential approach for the treatment of Alzheimer’s disease (AD). In vitro studies show that most of the synthesized compounds were potent in reducing the neurotoxicity of Aβ25-35-induced PC12 cells at 5 μg/mL. We found that compound 5c was non-neurotoxic at 30 μg/mL and significantly increased the viability of Aβ25-35-induced PC12 cells at 1.25, 2.5 and 5 μg/mL. Western blot analysis showed that compound 5c promoted the phosphorylation of Akt and glycogen synthase kinase (GSK-3β) and decreased the expression of nuclear factor-κB (NF-κB) in Aβ25-35-induced PC12 cells. In addition, our findings demonstrated that compound 5c protected PC12 cells from Aβ25-35-induced apoptosis and reduced the hyperphosphorylation of tau protein, and decreased the expression of receptor for AGE (RAGE), β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1), inducible nitric oxide synthase (iNOS) and Bcl-2-associated X protein/B-cell lymphoma 2 (Bax/Bcl-2) via Akt/GSK-3β/NF-κB signaling pathway. In vivo studies suggest that compound 5c shows less toxicity than donepezil in the heart and nervous system of zebrafish.


2020 ◽  
Vol 25 (9) ◽  
pp. 985-999
Author(s):  
John Vincent ◽  
Marian Preston ◽  
Elizabeth Mouchet ◽  
Nicolas Laugier ◽  
Adam Corrigan ◽  
...  

Cytoplasmic dynein-1 (hereafter dynein) is a six-subunit motor complex that transports a variety of cellular components and pathogens along microtubules. Dynein’s cellular functions are only partially understood, and potent and specific small-molecule inhibitors and activators of this motor would be valuable for addressing this issue. It has also been hypothesized that an inhibitor of dynein-based transport could be used in antiviral or antimitotic therapy, whereas an activator could alleviate age-related neurodegenerative diseases by enhancing microtubule-based transport in axons. Here, we present the first high-throughput screening (HTS) assay capable of identifying both activators and inhibitors of dynein-based transport. This project is also the first collaborative screening report from the Medical Research Council and AstraZeneca agreement to form the UK Centre for Lead Discovery. A cellular imaging assay was used, involving chemically controlled recruitment of activated dynein complexes to peroxisomes. Such a system has the potential to identify molecules that affect multiple aspects of dynein biology in vivo. Following optimization of key parameters, the assay was developed in a 384-well format with semiautomated liquid handling and image acquisition. Testing of more than 500,000 compounds identified both inhibitors and activators of dynein-based transport in multiple chemical series. Additional analysis indicated that many of the identified compounds do not affect the integrity of the microtubule cytoskeleton and are therefore candidates to directly target the transport machinery.


Sign in / Sign up

Export Citation Format

Share Document