Ex Vivo Generated Donor Central Memory CD8 T Cells, Previously Shown to Enhance Engraftment of Allogeneic Bone Marrow, Also Exhibit Significant GVL Activity without Causing Gvhd In An In Vivo b Cell Lymphoma Model

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 424-424 ◽  
Author(s):  
Assaf Lask ◽  
Eran Ophir ◽  
Noga Or-Geva ◽  
Adva Cohen ◽  
Ran Afik ◽  
...  

Abstract Abstract 424 Generation of T cells endowed with graft versus leukemia (GVL) and depleted of graph versus host (GVH) activity represents a highly desirable goal in BM transplantation (BMT). Donor CTLs directed against 3rd party stimulators were shown to effectively enhance engraftment of BM allografts without causing GVHD. Recently, we demonstrated that activated anti 3rd party CD8 cells with central memory phenotype (Tcm), can further support and improve BM engraftment. This is likely due to the improved lymph node homing of the Tcms, their proliferative capacity and prolonged persistence in BMT recipients. Surprisingly, when tested in vitro, anti 3rd party human CTLs were found to eliminate B CLL and other lymphoma cell types. Investigating the mechanism of the cytotoxicity revealed a unique TCR independent effect mediated against both autologous and allogeneic targets. Inhibition studies using specific blocking Ab revealed initial binding of CTLs to their targets via a rapid ICAM1-LFA1 adhesion, followed by slow induction of apoptosis following interaction of the CD8 on the CTL with MHCI on the tumor cell. The killing did not involve classical CTL death molecules. To establish an appropriate mouse model, we initially verified that anti 3rd party Tcm derived from (B6xBALB/c)F1 exhibit TCR independent killing of A20 lymphoma cells of BALB/c origin (34.8±12.1% in 4 experiments, 5:1 Tcm/lymphoma cell ratio, in comparison to A20 cells incubated without Tcm, p<0.05). Moreover, after 16 hours of incubation with Tcm, AnnexinV staining of A20 cells was enhanced compared to basal staining (14.8±4.5% and 5.2±2.2% respectively, in three experiments, p<0.05), suggesting an apoptosis based mechanism as previously described for the killing of human lymphoma. Using luciferase expressing A20 cells, we were able to follow the fate of the malignant cells in vivo, and study the effect of added donor anti 3rd party Tcm to either syngeneic or allogeneic BMT in a model simulating minimal residual disease. In the syngeneic model, 3×106 Nude BALB/c BM cells were transplanted into lethally irradiated BALB/c mice together with 5000 A20 cells. On the next day, syngeneic Tcm were infused. As can be seen in Fig. 1, none of the untreated mice survived (0/7) 100 days post BMT (23 days median survival). Administration of 1×107 or 2×107 syngeneic Tcms led to significantly diminished tumor burden (Fig. 1A) and improved overall survival of 28% (2/7, P<0.0001) and 40% (2/5, P<0.002) with median survival of 49 and 80 days, respectively (Fig. 1B). As expected, further improvement of tumor eradication was found in the allogeneic setting, in which an additional GVL effect, mediated by residual alloreactivity in the absence of GVHD, occurred in addition to the TCR independent killing. In the allogeneic model, 3×106 allogeneic Nude B6 BM cells were transplanted together with 5000 A20 cells into lethally irradiated BALB/c mice, and mice were treated with donor type Tcm. Similar to the results in the syngeneic model, none of the untreated mice survived 100 days (0/8) (23 days median survival), while administration of 5×106 donor Tcms, led to remarkable overall survival of 100% (7/7) at 100 days post BMT (Fig. 2). Although the allogeneic Tcm displayed enhanced GVL activity compared to syngeneic Tcm, this effect was not associated with any manifestation of GVHD. Thus, as previously described, the weight and overall appearance of mice receiving allogeneic anti 3rd party Tcms were the same as that of mice in the control group, radioprotected with a transplant of Nude BM alone. Collectively, we demonstrate for the first time, by in vivo imaging the GVL reactivity of murine anti 3rd party Tcm. Considering our previous finding that anti 3rd party Tcm markedly enhance BM allografting, these results suggest that anti 3rd party Tcm can provide a ‘double supportive effect' by promoting BM engraftment, and concurrently inducing GVL reactivity without causing GVHD. Such cell therapy is highly attractive, in particular for elderly patients with B CLL and other B cell malignancies who might not tolerate aggressive conditioning. Figure 1: Syngeneic anti 3rd party Tcm inhibit tumor relapse after syngeneic BM transplantation (A) Tumor growth was monitored by weekly bioluminesence imaging (BLI); (B) Survival curves. Figure 1:. Syngeneic anti 3rd party Tcm inhibit tumor relapse after syngeneic BM transplantation . / (A) Tumor growth was monitored by weekly bioluminesence imaging (BLI); (B) Survival curves. Figure 2: Allogeneic anti 3rd party Tcm inhibit tumor relapse after allogeneic BM transplantation (A) Tumor growth was monitored by weekly BLI; (B) Survival curves. Figure 2:. Allogeneic anti 3rd party Tcm inhibit tumor relapse after allogeneic BM transplantation . / (A) Tumor growth was monitored by weekly BLI; (B) Survival curves. Disclosures: No relevant conflicts of interest to declare.

2019 ◽  
Vol 116 (48) ◽  
pp. 24275-24284 ◽  
Author(s):  
Matthias Mulazzani ◽  
Simon P. Fräßle ◽  
Iven von Mücke-Heim ◽  
Sigrid Langer ◽  
Xiaolan Zhou ◽  
...  

T cells expressing anti-CD19 chimeric antigen receptors (CARs) demonstrate impressive efficacy in the treatment of systemic B cell malignancies, including B cell lymphoma. However, their effect on primary central nervous system lymphoma (PCNSL) is unknown. Additionally, the detailed cellular dynamics of CAR T cells during their antitumor reaction remain unclear, including their intratumoral infiltration depth, mobility, and persistence. Studying these processes in detail requires repeated intravital imaging of precisely defined tumor regions during weeks of tumor growth and regression. Here, we have combined a model of PCNSL with in vivo intracerebral 2-photon microscopy. Thereby, we were able to visualize intracranial PCNSL growth and therapeutic effects of CAR T cells longitudinally in the same animal over several weeks. Intravenous (i.v.) injection resulted in poor tumor infiltration of anti-CD19 CAR T cells and could not sufficiently control tumor growth. After intracerebral injection, however, anti-CD19 CAR T cells invaded deeply into the solid tumor, reduced tumor growth, and induced regression of PCNSL, which was associated with long-term survival. Intracerebral anti-CD19 CAR T cells entered the circulation and infiltrated distant, nondraining lymph nodes more efficiently than mock CAR T cells. After complete regression of tumors, anti-CD19 CAR T cells remained detectable intracranially and intravascularly for up to 159 d. Collectively, these results demonstrate the great potential of anti-CD19 CAR T cells for the treatment of PCNSL.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3721-3721
Author(s):  
Eugene Zhukovsky ◽  
Uwe Reusch ◽  
Carmen Burkhardt ◽  
Stefan Knackmuss ◽  
Ivica Fucek ◽  
...  

Abstract Abstract 3721 Background: CD19 is expressed from early B cell development through differentiation into plasma cells, and is an attractive alternative to CD20 as a target for the development of therapeutic antibodies to treat B cell malignancies. T cells are potent tumor-killing effector cells that cannot be recruited by native antibodies. The CD3 RECRUIT-TandAb AFM11, a humanized bispecific tetravalent antibody with two binding sites for both CD3 and CD19, is a novel therapeutic for the treatment of NHL that harnesses the cytotoxic nature of T cells. Methods: We engineered a bispecific anti-CD19/anti-CD3e tetravalent TandAb with humanized and affinity-matured variable domains. The TandAb's binding properties, T cell-mediated cytotoxic activity, and target-mediated T cell activation were characterized in a panel of in vitro assays. In vivo efficacy was evaluated in a murine NOD/scid xenograft model reconstituted with human PBMC. Results: AFM11 mediates highly potent CD19+ tumor cell lysis in cytotoxicity assays performed on a panel of cell lines (JOK-1, Raji, Nalm-6, MEC-1, VAL, Daudi) and primary B-CLL tumors: EC50 values are in the low- to sub-picomolar range and do not correlate with the expression density of CD19 on the target cell lines. The cytotoxic activity of tetravalent AFM11 is superior to that of alternative bivalent antibody formats possessing only a single binding site for both CD19 and CD3. High affinity binding of AFM11 to CD19 and to CD3 is essential for efficacious T cell recruitment. Both CD8+ and CD4+ T cells mediate cytotoxicity however the former exhibit much faster killing. We observe that AFM11 displays similar cytotoxic efficacy at different effector to target ratios (from 5:1 to 1:5) in cytotoxicity assays; this suggests that T cells are engaged in the serial killing of CD19+ target cells. In the absence of CD19+ target cells in vitro, AFM11 does not elicit T cell activation as manifested by cytokine release (from a panel of ten cytokines associated with T cell activation), their proliferation, or their expression of activation markers. AFM11 activates T cells exclusively in the presence of its targets and mediates lysis of CD19+ cells while sparing antigen-negative bystanders. In the absence of CD19+ target cells, AFM11 concentrations in excess of 500-fold over EC50 induce down-modulation of the CD3/TCR complex. Yet, AFM11-treated T cells can be re-engaged for target cell lysis. All of these features of AFM11-induced T cell activation may contribute additional safety without compromising its efficacy. In vivo AFM11 demonstrates a robust dose-dependent inhibition of subcutaneous Raji tumors in mice. At 5 mg/kg AFM11 demonstrates a complete suppression of tumor growth, and even at 5 ug/kg tumor growth is reduced by 60%. Moreover, we observe that a single administration of AFM11 produces inhibition of tumor growth similar to that of 5 consecutive administrations. Conclusions: In summary, our in vitro and in vivo experiments with AFM11 demonstrate the high potency and efficacy of its anti-tumor cytotoxicity. Thus, AFM11 is a novel highly efficacious drug candidate for the treatment of B cell malignancies with an advantageous safety profile. Disclosures: Zhukovsky: Affimed Therapeutics AG: Employment, Equity Ownership. Reusch:Affimed Therapeutics AG: Employment. Burkhardt:Affimed Therapeutics AG: Employment. Knackmuss:Affimed Therapeutics AG: Employment. Fucek:Affimed Therapeutics AG: Employment. Eser:Affimed Therapeutics AG: Employment. McAleese:Affimed Therapeutics AG: Employment. Ellwanger:Affimed Therapeutics AG: Employment.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3470-3470 ◽  
Author(s):  
Li Long ◽  
Xia Tong ◽  
Montesa Patawaran ◽  
Sharon L. Aukerman ◽  
Bahija Jallal ◽  
...  

Abstract CD40 is expressed on all B-cell malignancies, including multiple myeloma, and represents an attractive target for antibody therapy. CHIR-12.12 is a fully human, highly potent, IgG1 antagonistic anti-CD40 monoclonal antibody generated using XenoMouse® mice (Abgenix, Inc). CHIR-12.12 can mediate antitumor activity by at least two mechanisms: blocking CD40-ligand-mediated survival signals and killing tumor cells by antibody-dependent cellular cytotoxicity (ADCC). We have previously reported that CHIR-12.12 mediates stronger in vitro killing of CD40+- and CD20+-expressing human non-Hodgkin’s lymphoma and lymphoblastoid B cells by ADCC than rituximab and significantly inhibits the growth of rituximab-responsive (Daudi) and rituximab-resistant (Namalwa) human lymphoma and lymphoblastoid B-cell (IM-9) xenografts in vivo. In this study, we examined the in vitro and in vivo efficacy of CHIR-12.12 against the human multiple myeloma cell line KMS-12-BM. CHIR-12.12 induced lysis of KMS-12-BM cells by ADCC in a dose-dependent manner, reaching maximum cell lysis at 0.1μg/ml with an EC50 of 17.5 pM. CHIR-12.12 efficacy in vivo was evaluated in orthotopic and subcutaneous KMS-12-BM xenograft models. In the staged orthotopic model, tumor cells were delivered intravenously and treatment was initiated 7 days post cell implantation. CHIR-12.12 significantly prolonged the median survival of tumor-bearing mice in a dose-dependent manner, with a median survival of 78 and 98 days in the groups treated with 1 mg/kg and 10 mg/kg CHIR-12.12 weekly, respectively, compared to a median survival time of 68 days in the control IgG1 group (P<0.0001). Bortezomib administered i.v. twice weekly at 0.5 or 1 mg/kg showed no survival benefit. In the staged subcutaneous model, CHIR-12.12 was administered weekly at 1 and 10 mg/kg after the mean tumor volume reached 100mm3. CHIR-12.12 significantly inhibited tumor growth, with a tumor volume reduction of 42% (P<0.05) and 63% (P<0.01), respectively. Bortezomib and melphalan/prednisone did not inhibit KMS-12-BM tumor growth at the doses and schedules reported for other human multiple myeloma xenograft models. Western blot analysis and immunohistochemical staining showed significantly increased levels of cleaved PARP in KMS-12-BM s.c. tumors 7 days after the initiation of CHIR-12.12 treatment, suggesting the induction of cell death by CHIR-12.12. Taken together, these data demonstrate that the anti-CD40 mAb CHIR-12.12 has potent activity against human multiple myeloma cells in vitro and in xenograft models in vivo. Currently CHIR-12.12 is in Phase I clinical trials for the treatment of B-cell malignancies.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2408-2408
Author(s):  
Alexander JA Deutsch ◽  
Beate Rinner ◽  
Martin Pichler ◽  
Sonja Reitter ◽  
Christine Beham-Schmid ◽  
...  

Abstract Abstract 2408 NR4A1 (Nur77) and NR4A3 (Nor-1) are two members of the orphan nuclear receptors (NRs). Their function as critical tumour suppressor genes (TSG) is demonstrated by the rapid development of acute myeloid leukemia (AML) of NR4A1 and NR4A3 double knock out mouse and by their reduced expression in leukemic blasts from human AML patients. The aim of our study is to comprehensively study NR4A1 and NR4A3 expression B-cell malignancies and to define and functionally characterize the nuclear orphan receptors NR4A1 as TSGs in B-cell malignancies. We found a more than 50% reduction of both, NR4A1 and NR4A3, in B-CLL (71%) and Follicular Lymphoma (70%), and in diffuse large B cell lymphoma (DLBCL) (74%) compared to normal controls. In DLBCL low NR4A1 expression was significantly associated with non-germinal center B-cell subtype and with poor overall survival (p=0.042, HR=2.2, CI=1.01–4.9). To investigate the function of NR4A1 in lymphomas, we over-expressed NR4A1 in a lymphoma cell line (Sc-1) by using an inducible lentiviral expression system and performed apoptotic assays by determing cleaved caspase 3, the sub-G1 peak and Annexin V positivity. Induction of NR4A1 expression led to apoptosis in a significantly higher proportion of induced Sc-1 cells compared to their uninduced controls in all assays analysed. Additionally, treatment of an immortalized B cell line (UH3) and three lymphoma cell lines (Karpas422, SC-1 and Ly8) with Cytosporone B (Csn-B), a NR4A1 ligand known to induce NR4A1, caused NR4A1 mediated apoptosis. To test the tumor suppressor function of NR4A1 in vivo, the stably transduced Sc-1 lymphoma cell lines were further investigated in a NOD/SCID/IL-2rγnull (NSG) mouse model. Induction of NR4A1 in Sc-1 suppressed tumor growth in the NSG mice, in contrast to vector controls and uninduced Sc-1 cells, where massive tumor formation was observed. Our data suggest that NR4A1 has pro-apoptotic functions in vitro and that Csn-B induces a NR4A1 mediated apoptosis in lymphoma cells. Our xengraft experiments define NR4A1 as novel tumor suppressor in vivo. Hence, regulation of NR4A1 is a promising new therapeutical target for future anti-lymphomatherapy. Disclosures: No relevant conflicts of interest to declare.


1995 ◽  
Vol 181 (4) ◽  
pp. 1539-1550 ◽  
Author(s):  
E Racila ◽  
R H Scheuermann ◽  
L J Picker ◽  
E Yefenof ◽  
T Tucker ◽  
...  

Tumor dormancy can be induced in a murine B cell lymphoma (BCL1) by immunizing BALB/c mice with the tumor immunoglobulin (Ig) before tumor cell challenge. In this report, we have investigated the immunological and cellular mechanisms underlying the induction of dormancy. BCL1 tumor cells were injected into SCID mice passively immunized with antibody against different epitopes on IgM or IgD with or without idiotype (Id)-immune T lymphocytes. Results indicate that antibody to IgM is sufficient to induce a state of dormancy. Antibodies against other cell surface molecules including IgD and CD44 (Pgp1) had no effect on tumor growth. Id-immune T cells by themselves also had no effect on tumor growth in SCID mice. However, simultaneous transfer of anti-Id and Id-immune T cells enhanced both the induction and duration of the dormant state. In vitro studies indicated that antibody to IgM induced apoptosis within several hours and cell cycle arrest by 24 h. Hyper cross-linking increased apoptosis. The Fc gamma RII receptor played little or no role in the negative signaling. Antibodies that did not negatively signal in vitro did not induce dormancy in vivo. The results suggest that anti-IgM plays a decisive role in inducing tumor dormancy to BCL1 by acting as an agonist of IgM-mediated signal transduction pathways.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A663-A663
Author(s):  
Keegan Cooke ◽  
Juan Estrada ◽  
Jinghui Zhan ◽  
Jonathan Werner ◽  
Fei Lee ◽  
...  

BackgroundNeuroendocrine tumors (NET), including small cell lung cancer (SCLC), have poor prognosis and limited therapeutic options. AMG 757 is an HLE BiTE® immune therapy designed to redirect T cell cytotoxicity to NET cells by binding to Delta-like ligand 3 (DLL3) expressed on the tumor cell surface and CD3 on T cells.MethodsWe evaluated activity of AMG 757 in NET cells in vitro and in mouse models of neuroendocrine cancer in vivo. In vitro, co-cultures of NET cells and human T cells were treated with AMG 757 in a concentration range and T cell activation, cytokine production, and tumor cell killing were assessed. In vivo, AMG 757 antitumor efficacy was evaluated in xenograft NET and in orthotopic models designed to mimic primary and metastatic SCLC lesions. NSG mice bearing established NET were administered human T cells and then treated once weekly with AMG 757 or control HLE BiTE molecule; tumor growth inhibition was assessed. Pharmacodynamic effects of AMG 757 in tumors were also evaluated in SCLC models following a single administration of human T cells and AMG 757 or control HLE BiTE molecule.ResultsAMG 757 induced T cell activation, cytokine production, and potent T cell redirected killing of DLL3-expressing SCLC, neuroendocrine prostate cancer, and other DLL3-expressing NET cell lines in vitro. AMG 757-mediated redirected lysis was specific for DLL3-expressing cells. In patient-derived xenograft and orthotopic models of SCLC, single-dose AMG 757 effectively engaged human T cells administered systemically, leading to a significant increase in the number of human CD4+ and CD8+ T cells in primary and metastatic tumor lesions. Weekly administration of AMG 757 induced significant tumor growth inhibition of SCLC (figure 1) and other NET, including complete regression of established tumors and clearance of metastatic lesions. These findings warranted evaluation of AMG 757 (NCT03319940); the phase 1 study includes dose exploration (monotherapy and in combination with pembrolizumab) and dose expansion (monotherapy) in patients with SCLC (figure 2). A study of AMG 757 in patients with neuroendocrine prostate cancer is under development based on emerging data from the ongoing phase 1 study.Abstract 627 Figure 1AMG 757 Significantly reduced tumor growth in orthotopic SCLC mouse modelsAbstract 627 Figure 2AMG 757 Phase 1 study designConclusionsAMG 757 engages and activates T cells to kill DLL3-expressing SCLC and other NET cells in vitro and induces significant antitumor activity against established xenograft tumors in mouse models. These preclinical data support evaluation of AMG 757 in clinical studies of patients with NET.Ethics ApprovalAll in vivo work was conducted under IACUC-approved protocol #2009-00046.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii111-ii111
Author(s):  
Lan Hoang-Minh ◽  
Angelie Rivera-Rodriguez ◽  
Fernanda Pohl-Guimarães ◽  
Seth Currlin ◽  
Christina Von Roemeling ◽  
...  

Abstract SIGNIFICANCE Adoptive T cell therapy (ACT) has emerged as the most effective treatment against advanced malignant melanoma, eliciting remarkable objective clinical responses in up to 75% of patients with refractory metastatic disease, including within the central nervous system. Immunologic surrogate endpoints correlating with treatment outcome have been identified in these patients, with clinical responses being dependent on the migration of transferred T cells to sites of tumor growth. OBJECTIVE We investigated the biodistribution of intravenously or intraventricularly administered T cells in a murine model of glioblastoma at whole body, organ, and cellular levels. METHODS gp100-specific T cells were isolated from the spleens of pmel DsRed transgenic C57BL/6 mice and injected intravenously or intraventricularly, after in vitro expansion and activation, in murine KR158B-Luc-gp100 glioma-bearing mice. To determine transferred T cell spatial distribution, the brain, lymph nodes, heart, lungs, spleen, liver, and kidneys of mice were processed for 3D imaging using light-sheet and multiphoton imaging. ACT T cell quantification in various organs was performed ex vivo using flow cytometry, 2D optical imaging (IVIS), and magnetic particle imaging (MPI) after ferucarbotran nanoparticle transfection of T cells. T cell biodistribution was also assessed in vivo using MPI. RESULTS Following T cell intravenous injection, the spleen, liver, and lungs accounted for more than 90% of transferred T cells; the proportion of DsRed T cells in the brains was found to be very low, hovering below 1%. In contrast, most ACT T cells persisted in the tumor-bearing brains following intraventricular injections. ACT T cells mostly concentrated at the periphery of tumor masses and in proximity to blood vessels. CONCLUSIONS The success of ACT immunotherapy for brain tumors requires optimization of delivery route, dosing regimen, and enhancement of tumor-specific lymphocyte trafficking and effector functions to achieve maximal penetration and persistence at sites of invasive tumor growth.


Blood ◽  
2008 ◽  
Vol 112 (10) ◽  
pp. 4139-4147 ◽  
Author(s):  
Lisa S. Westerberg ◽  
Miguel A. de la Fuente ◽  
Fredrik Wermeling ◽  
Hans D. Ochs ◽  
Mikael C. I. Karlsson ◽  
...  

Abstract Development of hematopoietic cells depends on a dynamic actin cytoskeleton. Here we demonstrate that expression of the cytoskeletal regulator WASP, mutated in the Wiskott-Aldrich syndrome, provides selective advantage for the development of naturally occurring regulatory T cells, natural killer T cells, CD4+ and CD8+ T lymphocytes, marginal zone (MZ) B cells, MZ macrophages, and platelets. To define the relative contribution of MZ B cells and MZ macrophages for MZ development, we generated wild-type and WASP-deficient bone marrow chimeric mice, with full restoration of the MZ. However, even in the presence of MZ macrophages, only 10% of MZ B cells were of WASP-deficient origin. We show that WASP-deficient MZ B cells hyperproliferate in vivo and fail to respond to sphingosine-1-phosphate, a crucial chemoattractant for MZ B-cell positioning. Abnormalities of the MZ compartment in WASP−/− mice lead to aberrant uptake of Staphylococcus aureus and to a reduced immune response to TNP-Ficoll. Moreover, WASP-deficient mice have increased levels of “natural” IgM antibodies. Our findings reveal that WASP regulates both development and function of hematopoietic cells. We demonstrate that WASP deficiency leads to an aberrant MZ that may affect responses to blood-borne pathogens and peripheral B-cell tolerance.


2018 ◽  
Vol 115 (46) ◽  
pp. E10898-E10906 ◽  
Author(s):  
Sophie Viaud ◽  
Jennifer S. Y. Ma ◽  
Ian R. Hardy ◽  
Eric N. Hampton ◽  
Brent Benish ◽  
...  

Chimeric antigen receptor (CAR) T cells with a long-lived memory phenotype are correlated with durable, complete remissions in patients with leukemia. However, not all CAR T cell products form robust memory populations, and those that do can induce chronic B cell aplasia in patients. To address these challenges, we previously developed a switchable CAR (sCAR) T cell system that allows fully tunable, on/off control over engineered cellular activity. To further evaluate the platform, we generated and assessed different murine sCAR constructs to determine the factors that afford efficacy, persistence, and expansion of sCAR T cells in a competent immune system. We find that sCAR T cells undergo significant in vivo expansion, which is correlated with potent antitumor efficacy. Most importantly, we show that the switch dosing regimen not only allows control over B cell populations through iterative depletion and repopulation, but that the “rest” period between dosing cycles is the key for induction of memory and expansion of sCAR T cells. These findings introduce rest as a paradigm in enhancing memory and improving the efficacy and persistence of engineered T cell products.


Author(s):  
Patrycja Guzik ◽  
Klaudia Siwowska ◽  
Hsin-Yu Fang ◽  
Susan Cohrs ◽  
Peter Bernhardt ◽  
...  

Abstract Purpose It was previously demonstrated that radiation effects can enhance the therapy outcome of immune checkpoint inhibitors. In this study, a syngeneic breast tumor mouse model was used to investigate the effect of [177Lu]Lu-DOTA-folate as an immune stimulus to enhance anti-CTLA-4 immunotherapy. Methods In vitro and in vivo studies were performed to characterize NF9006 breast tumor cells with regard to folate receptor (FR) expression and the possibility of tumor targeting using [177Lu]Lu-DOTA-folate. A preclinical therapy study was performed over 70 days with NF9006 tumor-bearing mice that received vehicle only (group A); [177Lu]Lu-DOTA-folate (5 MBq; 3.5 Gy absorbed tumor dose; group B); anti-CTLA-4 antibody (3 × 200 μg; group C), or both agents (group D). The mice were monitored regarding tumor growth over time and signs indicating adverse events of the treatment. Results [177Lu]Lu-DOTA-folate bound specifically to NF9006 tumor cells and tissue in vitro and accumulated in NF9006 tumors in vivo. The treatment with [177Lu]Lu-DOTA-folate or an anti-CTLA-4 antibody had only a minor effect on NF9006 tumor growth and did not substantially increase the median survival time of mice (23 day and 19 days, respectively) as compared with untreated controls (12 days). [177Lu]Lu-DOTA-folate sensitized, however, the tumors to anti-CTLA-4 immunotherapy, which became obvious by reduced tumor growth and, hence, a significantly improved median survival time of mice (> 70 days). No obvious signs of adverse effects were observed in treated mice as compared with untreated controls. Conclusion Application of [177Lu]Lu-DOTA-folate had a positive effect on the therapy outcome of anti-CTLA-4 immunotherapy. The results of this study may open new perspectives for future clinical translation of folate radioconjugates.


Sign in / Sign up

Export Citation Format

Share Document