Sample Processing Obscures Cancer-Specific Alterations in Leukemic Transcriptomes

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2201-2201
Author(s):  
Heidi Dvinge ◽  
Rhonda E. Ries ◽  
Janine O. Ilagan ◽  
Derek L. Stirewalt ◽  
Soheil Meshinchi ◽  
...  

Abstract Substantial effort is currently devoted to identifying cancer-associated alterations using genomics technologies. While the genome is inherently stable over short time frames, the transcriptome is dynamic and potentially susceptible to alteration as samples move from the patient to the lab bench. Here, we show that standard blood collection procedures rapidly change the transcriptional and post-transcriptional landscapes of hematopoietic cells, resulting in biased activation of specific biological pathways, up-regulation of pseudogenes, antisense RNAs, and unannotated coding isoforms, and inhibition of RNA surveillance. These artifacts affect almost all published leukemia genomics studies, explaining up to 40% of putative cancer-associated differential expression and alternative splicing. To determine how standard blood collection procedures affect hematopoietic transcriptomes, we collected whole blood from four healthy donors in anticoagulant blood collection tubes. We then left this blood at room temperature for defined lengths of time (0-48h) in order to mimic the variable incubation that patient samples are typically subjected to during transfer from the primary treating physician to a research center, isolated peripheral blood mononuclear cells (PBMCs), and performed deep RNA-seq (Figure A). Contrary to the common assumption that RNA degrades during incubation, we observed no evidence of decreased RNA quality. Nonetheless, rapid and dramatic changes affected virtually every level of the gene expression process. The changes were highly biased; for example, pseudogenes and antisense RNAs were preferentially up-regulated, while cassette exons were preferentially repressed (Figure B). Incubation-induced changes in the transcriptome confound the identification of true cancer-specific alterations. Many genes affected by incubation participate in biological pathways of current interest in leukemia, including cytokine production, NF-κB signaling, chromatin modification, and RNA splicing. Furthermore, incubation for as little as 4 hours, our shortest time point, introduced dramatic changes in the post-transcriptional landscape. We observed widespread isoform switches, wherein isoforms that were rare or even undetectable at 0h became the major isoform after 8 to 24h of incubation, in genes such as NOTCH2, LEF1, and PHF20 that have been previously used as leukemic biomarkers (Figure C). Perhaps most surprisingly, incubation rapidly inhibited RNA surveillance, leading to genome-wide expression of normally degraded RNAs. This highly abnormal RNA surveillance inhibition was readily detectable in all published leukemia genomics datasets that we analyzed, with the exception of TCGA, and undetectable in any lymphoma or solid tumor dataset (Figure D). Together, our data show that incubation-induced changes in the transcriptional and post-transcriptional landscapes generate substantial artifacts that complicate the interpretation of leukemia genomics studies. To facilitate the incorporation of sample processing artifacts into downstream analysis, we provide biomarkers that detect prolonged incubation of individual samples. We furthermore show that the simple expedient of keeping blood on ice drastically reduces changes to the transcriptome. Our findings have important implications for the interpretation of published and ongoing leukemia genomics studies. Figure. (A) Leukemic samples are frequently subject to an ex vivo incubation period of variable length. (B) Ex vivo incubation causes biased up-regulation of pseudogenes and antisense RNAs and repression of cassette exons. (C) Incubation causes complete isoform switches in the LEF1 and PHF20 genes. (D) RNA surveillance is inhibited after only 4h of incubation. This abnormal inhibition of RNA surveillance is visible in all analyzed leukemia genomics datasets, with the exception of TCGA, and not in any lymphoma or solid tumor. Numbers above each x axis label indicate the number of samples in each dataset. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4180-4180
Author(s):  
W. Casey Wilson ◽  
Myriam N Bouchlaka ◽  
Ben J Capoccia ◽  
Ronald R Hiebsch ◽  
Michael J Donio ◽  
...  

Abstract Inhibitors of adaptive immune checkpoints have shown promise as cancer treatments. CD47 is an innate immune checkpoint receptor broadly expressed on normal tissues and over-expressed on several tumors. Binding of tumor CD47 to signal regulatory protein alpha (SIRPalpha) on macrophages and dendritic cells triggers a "don't eat me" signal that inhibits phagocytosis enabling escape of innate immune surveillance. Blocking CD47/SIRPα interaction promotes phagocytosis reducing tumor burden in numerous xenograft and syngeneic animal models. We have developed a next generation humanized anti-CD47 antibody, AO-176, that not only blocks the CD47/SIRPalpha interaction and induces phagocytosis of hematologic and solid tumor cells, but also exhibits several unique functional properties. The first property is the ability of AO-176 to induce direct tumor cytotoxic cell death in hematologic (ex. Jurkat, Raji and Molt-4) as well as solid human tumor cell lines by a cell autonomous mechanism (not ADCC). Secondly, AO-176 exhibits preferential binding to tumor versus normal cells, including red blood cells (RBCs), T cells, endothelial cells, skeletal muscle cells and epithelial cells. A0-176 also does not affect the function of any of these primary cells when assayed ex vivo. The negligible binding of AO-176 to RBCs versus hematologic (ex. Jurkat, Raji or Molt-4) or solid tumor cells is particularly profound and different from other reported anti-CD47 antibodies. AO-176 also does not induce hemagglutination of RBCs. These properties are expected not only to decrease the antigen sink, but also to minimize on-target clinical adverse effects observed following treatment with other reported RBC-binding anti-CD47 antibodies. Consistent with this attribute, AO-176 was well tolerated in cynomolgus monkeys with no adverse effects in general nor with respect to RBCs which was consistent with ex vivo results. A third novel property of AO-176 is its enhanced binding to tumor cells at acidic pH. Because the microenvironment of leukemic bone marrow and solid tumors has an acidic pH, this enhanced binding of AO-176 at low pH has the potential added advantage of tumor-specific targeting. Lastly, we show that AO-176 demonstrates dose-dependent anti-tumor activity in hematologic and solid tumor xenograft models. Taken together, the unique properties and anti-tumor activity of our next generation anti-CD47 antibody, AO-176, distinguishes it from other CD47/SIRPalpha axis targeting agents as it progresses to clinical development. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. SCI-44-SCI-44
Author(s):  
Xiaoxia Li

Abstract Low-grade systemic inflammation is often associated with metabolic syndrome, which plays a critical role in the development of the obesity-associated inflammatory diseases, including insulin resistance and atherosclerosis. Here, we investigate how Toll-like receptor-MyD88 signaling in myeloid and endothelial cells coordinately participates in the initiation and progression of high fat diet-induced systemic inflammation and metabolic inflammatory diseases. MyD88 deficiency in myeloid cells inhibits macrophage recruitment to adipose tissue and their switch to an M1-like phenotype. This is accompanied by substantially reduced diet-induced systemic inflammation, insulin resistance, and atherosclerosis. MyD88 deficiency in endothelial cells results in a moderate reduction in diet-induced adipose macrophage infiltration and M1 polarization, selective insulin sensitivity in adipose tissue, and amelioration of spontaneous atherosclerosis. Both in vivo and ex vivo studies suggest that MyD88-dependent GM-CSF production from the endothelial cells might play a critical role in the initiation of obesity-associated inflammation and development of atherosclerosis by priming the monocytes in the adipose and arterial tissues to differentiate into M1-like inflammatory macrophages. Collectively, these results implicate a critical MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 5-6
Author(s):  
Namita Kumari ◽  
Marina Jerebtsova ◽  
Songping Wang ◽  
Sharmin Diaz ◽  
Sergei Nekhai

Concerted action of numerous positively acting cellular factors is essential for Human immunodeficiency virus type 1 (HIV-1) replication but in turn is challenged by anti-viral restriction factors. Previously we showed that ex vivo one round HIV-1 replication and replication of fully competent T-tropic HIV-1(IIIB) is significantly reduced in peripheral blood mononuclear cells (PBMCs) obtained from patients with Sickle Cell Disease (SCD). Further, we identified and confirmed CDKN1A (p21) and CH25H as host restriction factors expressed in SCD PBMCs that may contribute to the HIV-1 inhibition, in addition to the previously reported SAMHD1 and IKBα. Since CH25H is an interferon stimulated gene (ISG), we analyzed IRFs and interferon expression in SCD PBMCs. Higher levels of IRF7 and IFNβ mRNA were observed in SCD PBMCs compared to controls. We probed further to ascertain if hemin or sickle Hb was responsible for interferon response. We found upregulation of IFNβ in THP-1 - derived macrophages treated with lysates of HbSS RBCs or purified HbS as compared to untreated or HbA treated controls. HbSS RBCs lysates and purified HbS inhibited HIV-1 gag mRNA expression in monocyte-derived macrophages infected with HIV-1(Ba-L). Recent clinical study showed increased levels of CD4 in HIV-1 infected SCD patients in Africa. Thus we analyzed CD4 levels in HIV-1 IIIB infected SCD PBMCs, and found them to be higher compared to controls. Levels of HIV-1 nef mRNA, that controls CD4 expression was lower in HIV-1 IIIB infected SCD PBMCs. As Nef counteracts SERINC3/5 restriction factor, we analyzed its expression as well as the expression of AP2 clathrin adaptor that is required for Nef mediated internalization of CD4. AP2 expression was lower and SERINC5 expression was higher in SCD PBMCs. CONCLUSIONS: SCD PBMCs could resist HIV-1 infection because of the increased IFNβ production by macrophages exposed to HbSS or sickle cell RBCs. SCD PBMC have increased levels of SERNIC5 and lower levels of HIV-1 Nef and host AP2 expression that, culumlatively, can increased CD4 levels and lead to the overall improved immunological health of SCD patients. ACKNOWLEDGMENTS: This work was supported by NIH Research Grants (1P50HL118006, 1R01HL125005, 1SC1HL150685, 5U54MD007597, 1UM1AI26617 and P30AI087714). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 561-561
Author(s):  
Kerstin Brettschneider ◽  
Anja Schmidt ◽  
Joerg Kahle ◽  
Aleksander Orlowski ◽  
Diana Stichel ◽  
...  

Abstract The development of inhibitory antibodies (inhibitors) against coagulation factor VIII (FVIII) is the most serious complication for patients with hemophilia A that undergo FVIII replacement therapy. In addition, healthy individuals can spontaneously develop inhibitory anti-FVIII auto-antibodies, which results in acquired hemophilia A. The current standard therapy for patients with hemophilia A and inhibitors, named immune tolerance induction (ITI), is based on frequent and mostly high dose administrations of FVIII. Unfortunately, the eradication of inhibitors can only be achieved in about 70% of patients. Alternative treatment of inhibitor patients with the monoclonal anti-CD20 antibody rituximab results in complete eradication of inhibitors; however, depletion of the entire CD20-positive B cell population is potentially accompanied by severe side effects. Recent studies in hemophilic FVIII knockout mice showed that the application of a FVIII-toxin conjugate resulted in (i) prevention of inhibitor development in naïve mice and (ii) long-term eradication of inhibitors in FVIII-immunized mice. As the use of FVIII for cell targeting of immunotoxins is presumably limited by its high molecular weight (250 kDa) and adhesiveness (off-target reactivity) we explored the potential use of alternative immunotoxins in the current study. The introduced immunotoxins are comprised of a single FVIII domain fused to the Exotoxin A (ETA) from Pseudomonas aeruginosa.The rationale for the use of a single domain instead of full length FVIII as cell-binding component is that immunodominant domains like A2 and C2 might still allow targeting of sufficient amounts of FVIII-specific B-cells by immunotoxins. For proof of concept studies, we generated a histidine-tagged C2 domain-ETA fusion protein (C2-ETA) that was bacterially expressed and purified by affinity chromatography. Purified C2-ETA was recognized by a panel of commercially available monoclonal anti-C2 antibodies in ELISA suggesting proper folding of the C2 domain in the bacterially expressed protein. To test the capacity of C2-ETA to eliminate FVIII-specific B-cells, splenocytes of FVIII-immunized FVIII knockout mice were re-stimulated with FVIII ex vivo in presence and absence of different concentrations of C2-ETA and ETA alone (as control). Re-stimulation of FVIII-specific memory B cells to FVIII- and C2-specific antibody secreting cells (ASC) was analyzed in anEnzyme linked immunospot (ELISPOT) assay using FVIII and C2 as antigens. While differentiation to FVIII-specific ASC was only partially inhibited by C2-ETA, differentiation to C2-specific ASC was completely blocked in a dose-dependent manner. In contrast, the use of ETA alone had no effect. Further analysis of the FVIII domain specificity of antibodies in plasma of FVIII-immunized FVIII knockout mice used for depletion studies revealed a strong contribution of C2-specific antibodies to the overall FVIII-specific immune response. In summary, our results show that the developed C2-ETA immunotoxin is able to specifically eliminate FVIII C2 domain-specific B cells ex vivo. Currently, C2-ETA is tested for its capacity to eliminate FVIII-specific B cells in FVIII knockout mice and additional FVIII domain-ETA immunotoxins are developed. Disclosures No relevant conflicts of interest to declare.


Cytotherapy ◽  
2012 ◽  
Vol 14 (1) ◽  
pp. 80-90 ◽  
Author(s):  
Daniela Montagna ◽  
Ilaria Turin ◽  
Roberta Schiavo ◽  
Enrica Montini ◽  
Nadia Zaffaroni ◽  
...  

Circulation ◽  
2021 ◽  
Vol 143 (Suppl_1) ◽  
Author(s):  
Jacob L Barber ◽  
Guoshuai Cai ◽  
Jeremy M Robbins ◽  
Robert E Gerszten ◽  
Prashant Rao ◽  
...  

Introduction: Regular exercise beneficially increases plasma HDL-C levels at the group level. However, variation in individual HDL-C responses to exercise highlight a need for predictive biomarkers of exercise response. Hypothesis: We hypothesized that baseline abundance of circulating proteins is predictive of HDL-C response to exercise and that identified proteins are part of a complex biological network of exercise response. Methods: We measured over 5,000 circulating proteins using an aptamer-affinity based platform (SomaScan) in 667 black and white adults from the HERITAGE Family Study. Fasting plasma HDL-C was measured at baseline and following 20 weeks of supervised endurance exercise training. To predict exercise induced changes in HDL-C using baseline abundance of circulating proteins, models were created using LASSO regression and a 70/30 training test data split with 10-fold cross validation. Biological pathways, networks, and functions involving proteins identified in predictive modeling were investigated by ingenuity pathway analysis (IPA) and integrated molecular pathway level analysis (IMPaLA). Results: Regular exercise significantly increased HDL-C in the sample by 1.5 ± 4.6 mg/dL (p<0.0001), however marked inter-individual differences in response were present (range: -19.5 to +17.4 mg/dL). LASSO regression of circulating proteins only yielded a model of 120 proteins with similar but stronger predictive power to a model of 19 clinical traits (root mean square error = 4.52 and 5.3 mg/dL respectively). LASSO regression of both clinical and proteomic predictors resulted in a final model of baseline HDL-C and 116 circulating proteins, with an improved root mean square error of 4.11 mg/dL. Furthermore, this panel of 116 proteins was able to explain 40.0% of the variance in exercise induced changes in plasma HDL-C, while clinical predictors alone (including baseline HDL-C) explained only 3.9%. Pathway analysis of these 116 proteins identified several biological processes including pathways involved in the progression towards atherosclerosis, angiogenesis, mTOR signaling, and mitochondrial fatty acid synthesis. Conclusions: Circulating proteins may allow for prediction of exercise induced changes in HDL-C. Additionally, proteins predictive of HDL-C response to exercise are associated with important biological pathways and may provide insights into the molecular mechanisms of the benefits of regular exercise.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Maya Finkler ◽  
Ayala Hochman ◽  
Ilya Pinchuk ◽  
Dov Lichtenberg

The aim of the present study was to evaluate the apparent disagreement regarding the effect of a typical cycling progressive exercise, commonly used to assessVO2max, on the kinetics ofex vivocopper induced peroxidation of serum lipids. Thirty-two (32) healthy young men, aged 24–30 years, who do not smoke and do not take any food supplements, participated in the study. Blood was withdrawn from each participant at three time points (before the exercise and 5 minutes and one hour after exercise). Copper induced peroxidation of sera made of the blood samples was monitored by spectrophotometry. For comparison, we also assayed TBARS concentration and the activity of oxidation-related enzymes. The physical exercise resulted in a slight and reversible increase of TBARS and slight changes in the activities of the studied antioxidant enzymes and the lag preceding peroxidation did not change substantially. Most altered parameters returned to baseline level one hour after exercise. Notably, the exercise-induced changes in OS did not correlate with the physical fitness of the subjects, as evaluated in this study (VO2max= 30–60 mL/min/kg). We conclude that in healthy young fit men a short exhaustive exercise alters only slightly the OS, independent of the actual physical fitness.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3207-3207
Author(s):  
Graham Smith ◽  
Loida Sheridan-Smith ◽  
Margaret A. Smith ◽  
Sam Pambakian ◽  
Jim Campbell

Abstract Platelet function is a vital factor in preventing bleeding irrespective of circulating platelet number. As a result, patients often have their surgery cancelled due to taking Aspirin or related medications. Similarly, patients bleed in the ITU setting when their counts and humoral coagulation are normal. This raises the concept of exhausted platelets which is often difficult to prove. The availability of a bedside technique which enumerates patients’ "functional" platelets, which is reliable and reproducible, represents a major step forward in determining whether these patients require platelet transfusion. Helena Laboratories, Beaumont, Texas, US have produced blood collection bottles which are coated with platelet agonists equine collagen (C), risocetin (R) or arachidonic acid (AA) in addition to 3.2mg sodium citrate. Our group is the first in Europe to use these bottles in association with point of care testing instrumentation (Horiba ABX Pentra, Chicksands, Beds, England). Samples were taken from normal, renal dialysis, cardiac catheterisation, haematological and ITU patients into K2EDTA and the above bottles and treated identically prior to counting. Samples taken into K2EDTA served as baseline controls whilst free platelets in the synchronously taken agonist samples represented non functional platelets (the normal functional ones having aggregated onto the inside wall of the tube). Data on 54 normal subjects showed that, when using C, only 6.2+/−3.1% of platelets were non functional (NF). Similar figures were found for R and AA. In dialysis patients with eGFR 4–25mls/min (n=32), the R NF% was 58.07+/−17.59%. In a similar group of renal patients on dialysis and Aspirin (n=12), the R NF% was 60.55+/−21.86% which was not statistically different from the non Aspirin group (p=0.955). In cardiac patients, all of whom were on Aspirin, C NF% was 35.23+/−23.12%, AA NF% 51.94+/−23.5% and R NF% 51.53+/−19.04%. C vs AA showed a significant p-value of 0.003and C vs R p=0.002. AA vs R was not significant at p=0.94. These data show that ristocetin is a surprisingly sensitive method of detecting non functional platelets in renal and Aspirin users. Classically, ristocetin is not thought of being a detector of Aspirin effect although data from Sloand et al. JASN (1997) 8(5),799 shows that ristocetin may detect renal effect on platelet GpIb-IX (CD42b). These data demonstrate the potential value of ristocetin aggregation ex vivo in determining the need for platelet transfusion and may provide clinicians with an improved and more logical rationale for such an expensive therapy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1028-1028
Author(s):  
Stefania Paolini ◽  
Emanuela Ottaviani ◽  
Sarah Parisi ◽  
Federica Salmi ◽  
Barbara Lama ◽  
...  

Abstract Abstract 1028 Poster Board I-50 Background: Outcome of elderly acute myeloid leukemia (AML) patients is dismal. Targeted-therapies might improve current results by overcoming drug-resistance and reducing toxicity. In particular, the farnesyl-transferase inhibitor Tipifarnib (Zarnestra®), and the proteasome inhibitor Bortezomib (Velcade®), appeared synergistic in AML cells ex vivo, and their association was shown to be safe in vivo in a phase I trial by our group. Aim We conduced a phase II study aiming to assess efficacy and toxicity of Tipifarnib-Bortezomib association in AML patients >18 years, unfit for conventional therapy, or >60 years, in relapse. Furthermore, we aimed to identify biological features potentially predictive of clinical response. In particular, we focused on the RASGRP1/APTX ratio, which was previously found to be effective in predicting treatment response in patients treated with Tipifarnib alone. Methods: Bortezomib (1.0 mg/m2) was administered as weekly infusion for three consecutive weeks (days 1, 8, 15). Tipifarnib was administered at dose of 300-600 mg BID for 21 consecutive days. Response was assessed at the end of each cycle (28 days). Patients' withdrawn was planned in case of progression or stable disease after six cycles. Real-time quantitative-PCR (q-PCR) was used for RASGRP1/APTX quantification. Results: Eighty patients were enrolled (47 male). Median age was 71 years (43-89) and WBC at diagnosis was 4.2 × 109/L (0.5- 42.1). Thirty-two out of 80 patients had a secondary-AML, 14 had a high risk cytogenetic and 42 were previously untreated. Seventy-five patients actually initiated the treatment, 62 completed at least the first cycle while 13 early dropped out for non-leukemia related adverse event. Nine patients achieved complete remission (CR), 1 patients obtained a partial response (PR) and in 2 cases an hematological improvement (HI) was documented for an overall response rate (ORR) of 19%. Eighteen had progressive disease (PD) and the remaining showed stable disease (SD). Median time to response was 112 days, corresponding to 4 cycles (range 2-14). Marrow response (CR+PR) was significantly associated with overall survival (OS) (p<0.0001). RASGRP1/APTX was evaluated before treatment initiation on bone marrow (BM) and/or peripheral blood (PB). The median RASGRP/APTX value on BM was 15.3 (15-19.8) in responder patients and 2.2 (0.5-25.9) in non responders, respectively (p=0.00006). Its median value on PB was 31.6 (19.3-35.5) in responders and 6.4 (0.5-27.1) in non responders, respectively (p=0.00001). Interestingly, no marrow responses were recorded in patients with marrow RASGRP1/APTX ratio <8, while the response rate was 43% in patients with RASGRP1/APTX >8 (p<0.0001). Finally, RASGRP1/APTX levels significantly correlated with OS (p=0.001) with a median OS of 490 days and 162 days in patients with RASGRP1/APTX >8 and <8 respectively. Conversely, there was no correlation between cytogenetics, secondary AML, previous treatment and response or overall survival. Toxicity was overall mild, the most common adverse event being febrile neutropenia. Permanent treatment interruption due to Tipifarnib-Bortezomib related adverse events occurred in 13/75 (17%) of patients. With a median follow-up of 122 days (range 9-737), 57/75 (76%) patients are dead and 18/75 (24%) are alive, six of which in CR. Conclusion: We conclude that the clinical efficacy of the combination Tipifarnib-Bortezomib was similar to what reported for Tipifarnib alone. However, noteworthy, we could confirm that the RASGPR1/APTX BM or PB level is an effective predictor of response. Though higher RASGRP1/APTX is relatively rare (∼10% of cases), Tipifarnib (±Bortezomib) may represent an important option in a subset of high risk/frail AML patients. Acknowledgments: Supported by BolognAIL, AIRC, European LeukemiaNET, COFIN, FIRB 2006, Fondazione del Monte di Bologna e Ravenna. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4257-4257
Author(s):  
Krzysztof Czyzewski ◽  
Lidia Gil ◽  
Beata Kolodziej ◽  
Beata Rafinska ◽  
Krzysztof Lewandowski ◽  
...  

Abstract Abstract 4257 Background Resistance to imatinib is one of the most important issues in treatment of CML. Proteasome inhibitor, bortezomib, is known to be effective in therapy of various neoplasms. Preclinical studies demonstrate the ability of bortezomib in chemosensitization and overcoming of chemotherapy resistance. Objective Analysis of ex vivo drug resistance to bortezomib and another 23 drugs including tyrosine kinase inhibitors (TKI) in CML, in comparison to acute adult and pediatric leukemia. Material and methods A total number of 241 patients entered the study, including: 106 Ph(-)ALL and 53 AML children (age 0.1-18, median 7 years) and 46 AML and 36 CML adults (age 18-69, median 41 years). All children were diagnosed as de novo leukemia, AML adults as de novo (n=20) or relapsed/refractory (n=26). Due to similar drug sensitivity, all adult AML patients were pooled into one group (Gil et al, Anticancer Res, 2007;27:4021). Among CML patients 19 had advanced disease; 16 were resistant to imatinib and 6 had ABL-kinase domain mutations (M244V, E255K, Y253H, M351T and 2 with F317L). Ex vivo drug resistance profile was studied by the MTT assay with the use of following drugs: prednisolone, vincristine, idarubicin, daunorubicin, doxorubicin, mitoxantrone, etoposide, L-asparaginase, melphalan, cytarabine, fludarabine, cladribine, thiotepa, treosulfan, 4-HOO-cyclophosphamide, thioguanine, bortezomib, topotecan, clofarabine and busulfan. CML patients were also tested for sensitivity to TKI: imatinib, dasatinib and nilotinib. Results CML cells were more resistant than AML blasts to following drugs: prednisolone (1.5-fold; p=0.037), vincristine (2.3-fold; p=0.004), doxorubicin (>6.9-fold; p<0.001), etoposide (7.4-fold; p<0.001), melphalan (5.9-fold; p=0.001), cytarabine (12.5-fold; p=0.005), fludarabine (2.6-fold; p=0.008), thiotepa (5.4-fold: p=0.001), 4-HOO-cyclophosphamide (2.3-fold; p=0.015), thioguanine (>4-fold; p<0.001), bortezomib (6.2-fold; p<0.001), topotecan (20-fold; p<0.001), and clofarabine (50-fold; p<0.001). No differences in sensitivity were found for idarubicin, daunorubicin, mitoxantrone, L-asparaginase, cladribine, and treosulfan, while CML cells were 2-fold more sensitive to busulfan (p=0.035). Adult and pediatric AML samples did not differ significantly in ex vivo drug resistance to all tested drugs. Pediatric AML samples were more resistant than pediatric ALL samples to most of tested drugs, however they had comparable sensitivity to cytarabine, thioguanine, bortezomib, and clofarabine. CML patients with mutation had higher ex vivo resistance to: vincristine (3.3-fold; p=0.044), idarubicin (7.9-fold; p=0.031), thiotepa (13.7-fold; p=0.044), and busulfan (21.6-fold; p=0.024). No significant differences were observed with respect to other drugs, including all 3 TKI's. CML patients resistant to imatinib had higher ex vivo resistance to: vincristine (2.5-fold; p=0.016), daunorubicin (3.1-fold; p=0.011), etoposide (2.2-fold; p=0.031), and busulfan (4.5-fold; p=0.032). No significant differences were observed in respect to other drugs, including all 3 TKI's. No significant differences were observed between CML patients with non-advanced and advanced disease to all tested drugs, including TKI's. Conclusions CML cells are ex vivo more resistant to most drugs than acute leukemia blasts. Bortezomib alone has no ex vivo activity in CML patients. No differences between CML subgroups in sensitivity to 3 various TKI was detected. These findings require further investigations. Acknowledgments This study was supported by grants: EC 2008/2009 ZPORR SPS.IV-3040-UE/217/2009; EFS 9/9/POKL/4.4.1/2008; UMK 09/2009 and MNiSW N407 078 32/2964. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document