scholarly journals CD46 Is Amplified in High-Risk Myeloma with Gain of Chromosome 1q and Selectively Targeted By a Novel Anti-CD46 Antibody-Drug Conjugate

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 384-384
Author(s):  
Daniel W. Sherbenou ◽  
Blake T. Aftab ◽  
Yang Su ◽  
Christopher R. Behrens ◽  
Arun P. Wiita ◽  
...  

Abstract Background: Multiple myeloma (MM) is incurable by standard approaches, with relapse and development of treatment resistance inevitable in all patients. We previously identified a panel of novel macropinocytosing human monoclonal antibodies against CD46 by phage antibody library display and optimized a lead antibody for targeted drug delivery. Antibody-drug conjugates (ADCs) have recently seen proof-of-concept clinical success in Hodgkin lymphoma and breast cancer, but none is yet FDA-approved for MM. The CD46 gene is located on the long arm of chromosome 1 (1q32.2), 50Mbp from a FISH probe clinically used to identify high-risk MM and which may provide a surrogate biomarker for CD46 as a therapeutic target. Methods:We covalently conjugated the monomethyl auristatin F (MMAF) toxin to our anti-CD46 antibody via a lysosomal protease sensitive valine-citrulline linker (hereafter referred to as CD46-ADC). High Performance Liquid Chromatography analysis with hydrophobic interaction chromatography of the final conjugate showed an average drug per antibody of 3.3. CD46-ADC was evaluated for cytotoxicity in vitro in MM cell lines, in vivo with cell line xenografts in NSG mice, and ex vivo in MM patient bone marrow (BM)aspirate samples. To assess in vivo toxicity, CD46-ADC treatment was administered to transgenic mice that express the human CD46 gene under its native promoter. Results: CD46 was highly expressed on the cell surface of all 18 MM cell lines tested, and was upregulated on MM1.S cells co-cultured with the BM stromal cell line HS5. In BM aspirate samples, CD46 was highly expressed on MM cells in 100% (n=25) patients evaluated. By quantitative flow cytometry in 10 patients, the CD46 cell surface antigen density was significantly higher in patient MM cells with 1q21 gain (1q+) than those with normal 1q21 copy number (p=0.032) (Fig 1A). In patients with amp1q21 the mean CD46 antigen density on MM cells was 313,190 (SEM 68,849), compared to patients with normal 1q21 where it was 121,316 (SEM 28,352) (Fig 1A). In contrast, CD46 antigen density on normal donor (n=3) BM hematopoietic cell populations was low (antigen density range 8,443 - 23,772). Of note, higher CD46 antigen density was present on monocytes (mean 58,320, SEM 6,874) and granulocytes (mean 54,439, SEM 10,688) relative to the other populations (Fig 1B). CD46-ADC potently inhibited proliferation in all 14 MM cell lines tested (EC50 range of 150 pM - 5 nM) (Fig 1C). On BM stromal cells, CD46-ADC had EC50 >100 nM for patient-derived BM61 (generated via culture of CD138-negative BM) cells and no effect on HS5 cells in concentrations tested up to 150 nM. CD46-ADC eliminated MM growth in two orthometastatic xenograft models. In one model, MM1.S cell line xenografts expressing firefly luciferase grown in NSG mice were treated once every 3-4 days at either 4 mg/kg or 0.8 mg/kg for 4 injections, or with a single dose of 4 mg/kg (Fig 2A). Control groups were treated with vehicle, nonbinding ADC or naked antibody (CD46-mAb). CD46-ADC 4 mg/kg (4 dose) eliminated bioluminescent activity throughout the duration of the study (Fig 2B), and all mice survived to study discontinuation (Fig 2C). The single dose and low dose groups showed elimination of bioluminescence, but all mice relapsed (Fig 2B-C). In patient BM aspirate samples, CD46-ADC induces apoptosis and cell death in primary MM cells ex vivo (EC50 <10 nM), but did not affect the viability of non-tumor mononuclear cells (MNCs). For in vivo toxicity study, human CD46 transgenic mice were treated with a single IV bolus injection of 6 mg/kg CD46-ADC and showed no body weight loss or overt side effects for 14 days. At study discontinuation (day 14), histologic analysis of major organs showed no notable tissue damage. Conclusion: We have identified a novel functional antigen, CD46, for ADC targeting of MM, with unique potential for high-risk and relapsed/refractory disease that has genomic amplification at the CD46 gene locus and are in dire need of therapy. The novel CD46-ADC is highly potent and selective in eliminating MM cells (cell lines and primary tumor cells) in preclinical models. CD46 genomic gain on chromosome 1q correlates with antigen amplification, andindentifies a potential biomarker based on a clinical FISH test that can be used for patient stratification. Thus, our study could lead directly to the application of a novel ADC therapeutic for treating MM. Disclosures Aftab: Onyx Pharmaceuticals, Inc.: Research Funding; Atara Biotherapeutics, Inc.: Employment, Equity Ownership; Omniox, Inc.: Research Funding; CytomX: Research Funding; Cleave Biosciences, Inc.: Research Funding. Wiita:Onyx Pharmaceuticals: Research Funding; Omniox, LLC: Research Funding; Cleave Biosciences: Research Funding; Quadriga Biosciences: Research Funding. Wolf:Celgene: Honoraria; Telomere Diagnostics: Consultancy; Takeda: Honoraria; Amgen: Honoraria; Pharmacyclics: Honoraria. Martin:Sanofi: Research Funding; Amgen: Research Funding.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3952-3952
Author(s):  
Katarzyna Szoltysek ◽  
Helen Blair ◽  
Sirintra Nakjang ◽  
Ricky Tirtakusuma ◽  
Mankaran Singh ◽  
...  

Acute lymphoblastic leukemia (ALL) is the most common type of childhood leukaemia. Recently improved risk stratification resulted in therapy optimization and extended survival for the majority of cases. Unfortunately, there is still a significant number of patients either relapsing or not responding to treatment with response to glucocorticoids being one of the most important prognostic indicators of treatment outcome. In order to investigate the mechanism of dexamethasone resistance, we performed genome-wide CRISPR screens in patient derived xenotransplant (PDX) material from t(17;19)-positive ALL. Primary material was obtained from the patient at the presentation and at relapse stage of disease and corresponding PDX samples were generated in immunocompromised NSG mice. PDX cells were lentivirally transduced with the CRISPR knockout pooled 'Brunello' library and then subjected to dexamethasone pressure both ex vivo and in vivo. For the in vivo screen, CRISPR-modified cells were intrafemorally injected into immunodeficient NSG mice followed by either 7.5mg/kg dexamethasone or vehicle treatment. In parallel, PDXs were co-cultured with mesenchymal and endothelial-like human stromal cells generated from human bone marrow-derived iPSCs. Data analysis performed with the MAGeCKFlute software identified the glucocorticoid receptor gene NR3C1 as a main driver of chemoresistance-mediated relapse in this high-risk ALL. Notably, a homozygous deletion of NR3C1 was present in the relapse PDX sample. Furthermore, we identified that loss of the NR3C1 gene in those cells was associated with an inferior engraftment potential in the absence of dexamethasone. Interestingly, the whole-genome CRISPR screen in the relapse sample identified BCL2 and several genes associated with the mTOR pathway as crucial for leukaemic propagation. Knockout of NR3C1 in the diagnostic PDX also established dexamethasone resistance and further enhanced the already significant sensitivity towards mTOR inhibitors. To explore a potential synergism between BCL2 and mTOR inhibition, we assessed the effect of the BCL2 inhibitor ABT-199 and several mTOR inhibitors in both presentation and relapse PDX samples. PDX samples were co-cultured with MSCs and treated with drug combinations in a matrix format for 96 hrs followed by high-throughput fluorescence microscopy-based analysis. These experiments revealed substantial synergism of ABT-199 and mTOR inhibitors associated with increased cell death and prolonged growth inhibition in both presentation and relapse samples. In conclusion, our studies (i) demonstrate that genome-wide CRISPR screens are feasible in PDX material both ex vivo and in vivo, (ii) provide an explanation for the relative rarity of NR3C1 mutations in relapsed material and (iii) identify drug combinations effective in both diagnostic and relapse PDX for further preclinical evaluation. Disclosures Vormoor: Abbvie (uncompensated): Consultancy, Honoraria; Novartis: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Roche/Genentech: Consultancy, Honoraria, Research Funding; AstraZeneca: Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 17-18
Author(s):  
Klaudyna Fidyt ◽  
Julia Cyran ◽  
Agata Pastorczak ◽  
Nicholas T. Crump ◽  
Angelika Muchowicz ◽  
...  

Background: Venetoclax (VEN), a specific BCL2 inhibitor, exerts anti-leukemic effects in various high-risk (HR) B-ALL subtypes, such as ALL with mixed lineage leukemia (MLL) gene rearrangements (MLLr ALL) (PMID: 26711339), Philadelphia chromosome-positive (Ph+) (PMID 30546081) or hypodiploid B-ALL (PMID 30862722). Nevertheless, despite high rationale for targeting BCL2 in these subtypes of B-ALL, VEN monotherapy is not effective enough to completely eliminate leukemic cells. For this reason identification of other drugs that could sensitize leukemic cells to VEN may become beneficial treatment strategy in HR ALL. Previously, we showed that the enzymes of the thioredoxin system are upregulated in primary B-ALL cells and that auranofin (AUR), a thioredoxin reductase inhibitor, effectively kills leukemic cells in vitro and in vivo. Importantly, elements of the thioredoxin system are not only balancing redox homeostasis within the cells, but may also interact with other pathways, including anti-apoptotic signaling. Considering above, we hypothesized that AUR may potentiate VEN efficacy in HR B-ALL. Methods: To evaluate cytostatic/cytotoxic effects of VEN+AUR combination by MTT assay and propidium iodide (PI)-staining we used HR B-ALL cell lines, including SEM (MLLr ALL), BV-173 (Ph+ ALL) and NALM-16 (hypodiploid ALL). Patient derived xenograft cells (PDX) were generated through long-term propagation of primary B-ALL samples in immune-deficient NSG mice. Ex vivo drug testing in co-culture system was performed using primary bone marrow-derived mesenchymal stem cells (BM-MSC) and murine stromal OP9 cell line. NOXA genomic knockout (KO) in SEM cells was established by CRISPR/Cas9 system. Chromatin accessibility within PMAIP1 gene (encodes for NOXA) was detected using ATAC-seq. Results: We observed that AUR sensitizes HR B-ALL cell lines to VEN, as determined by MTT and PI-staining. Further, we mimicked the bone marrow support of stromal cells towards B-ALL and evaluated its impact on the response to VEN+AUR. For this reason we employed an ex vivo co-culture system of B-ALL PDX cells with primary BM-MSC or an OP9 cell line. In all tested PDX samples representing diagnostic/relapsed MLLr ALL (n=8), Ph+ ALL (n=2) and Ph-like ALL (n=2) we observed synergistic effect of this combination (Fig. 1A). Next, we determined the efficacy of VEN+AUR combination in vivo using a PDX model of MLLr B-ALL. We observed that administration of VEN+AUR diminished the progression of leukemia during a 3 week-long treatment more effectively than any single drug alone, which reflected in longer survival of NSG mice (Fig. 1B). Subsequently, we aimed to uncover the mechanism responsible for the synergistic action of VEN+AUR. In cells treated with both drugs we observed enhanced caspase activation and changes in the levels of BCL2 family proteins involved in apoptotic signaling. In particular, we found that AUR strongly upregulates a pro-apoptotic NOXA protein, both in HR B-ALL cell lines and in MLLr ALL PDX samples (Fig. 1C). To evaluate whether NOXA induction is functionally relevant for the cell death mediated by VEN+AUR, we generated SEM cells with a NOXA genomic KO. Lack of NOXA significantly abolished VEN-single agent as well as VEN+AUR combination cytotoxicity, demonstrating its dependence on NOXA expression (Fig. 1D). We then showed that NOXA is regulated at the transcriptional level, as co-treatment with AUR and the transcription inhibitor, actinomycin D, abolished AUR-mediated NOXA induction at mRNA and protein levels in SEM cells. Additionally, to test whether AUR-treatment itself provokes changes in chromatin accessibility within the NOXA encoding gene (PMAIP1) we performed ATAC-seq. We observed a clear increase in accessibility at PMAIP1 in response to AUR, which correlated with transcriptional induction of NOXA. Moreover, ChIP-qPCR revealed that increased ATAC peaks within PMAIP1 were associated with an increase in H3 lysine 27 acetylation (H3K27ac) - an epigenetic mark associated with open chromatin conformation. Conclusions: Our results demonstrate that FDA-approved drug, AUR, is a promising candidate to be used in combination with VEN for the therapy of HR B-ALL subtypes. Importantly, NOXA induction by AUR plays a central role in the VEN+AUR synergistic cytotoxicity. More studies elucidating the mechanism of NOXA upregulation by AUR are underway. Disclosures Milne: OxStem Oncology (OSO), a subsidiary company of OxStem Ltd.: Other: Founding shareholder .


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2444-2444 ◽  
Author(s):  
Brent A. Williams ◽  
Xinghua Wang ◽  
Bertrand Routy ◽  
Richard Cheng ◽  
Sonam Maghera ◽  
...  

Abstract Introduction: We are studying NK cell immunotherapy to treat acute myeloid leukemia (AML) and have focused on NK-92 and KHYG-1, CD16(-) human malignant NK cell lines. Phase I NK-92 trials show minimal toxicity; KHYG-1 has not been tested in humans. Here, we investigated modulation of cytotoxicity of NK cell lines against primary AML blasts and cell lines with monoclonal antibodies (mAb) directed against natural cytotoxicity receptors. Methods: NK cytotoxicity was assessed with a standard 4 hour Cr51 release assay at an effector to target (E:T) ratio of 10:1. NK lines were incubated with and without isotype control and mAbs against NKp30, NKp44 at various doses (0.001-10 µg/ml) for 1 hour and washed with medium prior to cytotoxicity assays. The student’s t-test was used to compare cytotoxicity data. Target cells were incubated with 100 µCi Cr51 and cell supernatants assayed on a gamma counter. NK targets (leukemic and esophageal cancer) were evaluated for Fcγ receptor expression by flow cytometry. To test the cytotoxic effect on in vivo proliferation, OCI/AML5 cells were co-incubated with irradiated KHYG-1 (iKHYG-1) +/-1 µg/ml NKp30 pretreatment for 4 hours at a 10:1 E:T ratio and injected ip into NOD/SCID gamma null (NSG) mice with survival as an endpoint analyzed with the log rank test. Results: NK-92 and KHYG-1 were both highly cytotoxic against K562 with moderate killing of OCI/AML3 and KG1 and KG1a. OCI/AML5 was highly sensitive to killing by NK-92, but resistant to KHYG-1. Pretreatment of NK-92 with mAbs against NKp30, NKp44 (10 µg/ml) yielded small increases in cytotoxicity against leukemic cell lines with NKp30 pretreatment only. Pretreatment of KHYG-1 with 10 µg/ml of anti-NKp30 or anti-NKp44 mediated fold increases in cytotoxicity above isotype control against 4 leukemia cell line targets and 4 primary AML samples (Table1). Anti-NKp30 and anti-NKp44 pretreatment of NK-92 and KHYG-1 did not enhance killing of a panel of esophageal cancer cell lines. Immunophenotyping cancer cell lines showed high expression of Fcγ receptor II (CD32), but very low expression of Fcγ receptor I (CD64) or III (CD16) on leukemia lines (K562, OCI/AML3, OCI/AML5, KG1 and KG1a), and no expression of Fcγ receptors on esophageal lines (OE-33, FLO-1, KYAE-1, SKGT-4). Regression analysis of the relationship between cytotoxic enhancement and CD32 expression of targets revealed a strong correlation for NKp30 (p<0.01; R2=0.71) and NKp44 (p<0.01; R2=0.64) pretreated KHYG-1. NSG mice injected with 2x106 OCI/AML5 cells developed progressive malignant ascites at 9 weeks requiring sacrifice, unaffected by iKHYG-1 (p=0.92). However, NKp30 pretreated iKHYG-1 improved survival versus no therapy (p<0.05) or iKHYG-1 (p<0.05) cohorts. Conclusion: We show a novel means to enhance cytotoxicity of NK cell lines many fold against primary AML cells by pretreatment with mAbs against NKp30 and NKp44. The mechanism of enhanced KHYG-1 cytotoxicity is from bound NKp30 or NKp44 becoming crosslinked when the Fc portion binds the Fcγ receptor II (CD32) on targets. This is the first demonstration of reverse antibody-dependent cell-mediated cytotoxicity (R-ADCC) with a NK cell line leading to enhanced killing of AML primary blasts in vitro and the first demonstration of R-ADCC in an in vivo model. Table 2: Effect of NKp30 or NKp44 pretreatment on KHYG-1 cytotoxicity against primary AML samples Fold lysis and p values Primary AML samples 5890 080078 0909 080179 Fold change lysis NKp30 1.7 15.7 2.7 4.9 Fold change lysis NKp44 0.9 16.3 2.8 6.2 p value NKp30 <0.05 =0.0001 <0.0001 <0.001 p value NKp44 0.9 <0.001 <0.001 <0.001 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 39-39
Author(s):  
Kamil Bojarczuk ◽  
Kirsty Wienand ◽  
Jeremy A. Ryan ◽  
Linfeng Chen ◽  
Mariana Villalobos-Ortiz ◽  
...  

Abstract Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous disease that is transcriptionally classified into germinal center B-cell (GCB) and activated B-cell (ABC) subtypes. A subset of both GCB- and ABC-DLBCLs are dependent on B-cell receptor (BCR) signaling. Previously, we defined distinct BCR/PI3K-mediated survival pathways and subtype-specific apoptotic mechanisms in BCR-dependent DLBCLs (Cancer Cell 2013 23:826). In BCR-dependent DLBCLs with low baseline NF-κB activity (GCB tumors), targeted inhibition or genetic depletion of BCR/PI3K pathway components induced expression of the pro-apoptotic HRK protein. In BCR-dependent DLBCLs with high NF-κB activity (ABC tumors), BCR/PI3K inhibition decreased expression of the anti-apoptotic NF-κB target gene, BFL1. Our recent analyses revealed genetic bases for perturbed BCR/PI3K signaling and defined poor prognosis DLBCL subsets with discrete BCR/PI3K/TLR pathway alterations (Nat Med 2018 24:679). Cluster 3 DLBCLs (largely GCB tumors) exhibited frequent PTEN deletions/mutations and GNA13 mutations. Cluster 5 DLBCLs (largely ABC tumors) had frequent MYD88L265P and CD79B mutations that often occurred together. These DLBCL subtypes also had different genetic mechanisms for deregulated BCL2 expression - BCL2 translocations in Cluster 3 and focal (18q21.33) or arm level (18q) BCL2 copy number gains in Cluster 5. These observations prompted us to explore the activity of PI3K inhibitors and BCL2 blockade in genetically defined DLBCLs. We utilized a panel of 10 well characterized DLBCL cell line models, a subset of which exhibited hallmark genetic features of Cluster 3 and Cluster 5. We first evaluated the cytotoxic activity of isoform-specific, dual PI3Kα/δ and pan-PI3K inhibitors. In in vitro assays, the PI3Kα/δ inhibitor, copanlisib, exhibited the highest cytotoxicity in all BCR-dependent DLBCLs. We next assessed the transcriptional abundance of BCL2 family genes in the DLBCLs following copanlisib treatment. In BCR-dependent GCB-DLBCLs, there was highly significant induction of the pro-apoptotic HRK. In BCR-dependent ABC-DLBCLs, we observed significant down-regulation of the anti-apoptotic BFL1 protein and another NF-κB target gene, BCLxL (the anti-apoptotic partner of HRK). We then used BH3 profiling, to identify dependencies on certain BCL2 family members and to correlate these data with sensitivity to copanlisib. BCLxL dependency significantly correlated with sensitivity to copanlisib. Importantly, the BCLxL dependency was highest in DLBCL cell lines that exhibited either transcriptional up-regulation of HRK or down-regulation of BCLxL following copanlisib treatment. In all our DLBCL cell lines, PI3Kα/δ inhibition did not alter BCL2 expression. Given the genetic bases for BCL-2 deregulation in a subset of these DLBCLs, we next assessed the activity of the single-agent BCL2 inhibitor, venetoclax, in in vitro cytotoxicity assays. A subset of DLBCL cell lines was partially or completely resistant to venetoclax despite having genetic alterations of BCL2. We postulated that BCR-dependent DLBCLs with structural alterations of BCL2 might exhibit increased sensitivity to combined inhibition of PI3Kα/δ and BCL2 and assessed the cytotoxic activity of copanlisib (0-250 nM) and venetoclax (0-250 nM) in the DLBCL cell line panel. The copanlisib/venetoclax combination was highly synergistic (Chou-Talalay CI<1) in BCR-dependent DLBCL cell lines with genetic bases of BCL2 deregulation. We next assessed copanlisib and venetoclax activity in an in vivo xenograft model using a DLBCL cell line with PTENdel and BCL2 translocation (LY1). In this model, single-agent copanlisib did not delay tumor growth or improve survival. Single-agent venetoclax delayed tumor growth and improved median survival (27 vs 51 days, p<0.0001). Most notably, we found that the combination of copanlisib and venetoclax delayed tumor growth significantly longer than single-agent venetoclax (p<0.0001). Additionally, the combined therapy significantly increased survival in comparison with venetoclax alone (median survival 51 days vs not reached, p<0.0013). Taken together, these results provide in vitro and in vivo pre-clinical evidence for the rational combination of PI3Kα/δ and BCL2 blockade and set the stage for clinical evaluation of copanlisib/venetoclax therapy in patients with genetically defined relapsed/refractory DLBCL. Disclosures Letai: AbbVie: Consultancy, Other: Lab research report; Flash Therapeutics: Equity Ownership; Novartis: Consultancy, Other: Lab research report; Vivid Biosciences: Equity Ownership; AstraZeneca: Consultancy, Other: Lab research report. Shipp:AstraZeneca: Honoraria; Merck: Research Funding; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 567-567
Author(s):  
Donia M Moujalled ◽  
Diane T Hanna ◽  
Giovanna Pomilio ◽  
Veronique Litalien ◽  
Shaun Fleming ◽  
...  

Abstract Background Precursor-B acute lymphoblastic leukemia (B-ALL) is an aggressive hematological malignancy. Relapsed disease has a poor prognosis, despite improved outcomes with tyrosine kinase inhibitors for Ph+ cases and immunotherapeutic approaches, such as blinotumomab and CAR-T cells. Targeting cell survival with novel small molecule BH3-mimetic inhibitors of BCL-2 (e.g. Souers et al Nat Med 2013, Roberts et al, NEJM 2016 and Casara et al, Oncotarget 2018), BCL-XL (Lessene et al, Nat Chem Biol, 2013) or MCL1 (Kotschy et al, Nature 2016) is an emerging therapeutic option. BCL-2 is reported to have a pro-survival role in BCR-ABL1, JAK2 fusion, ETV6-RUNX1 and MLL-r driven ALL (Brown et al., Journal Biological Chemistry 2017). BH3-mimetics targeting BCL-2 and BCL-XL has efficacy in paediatric ALL xenografts (Khaw et al., Blood 2016), while ruxolitinib combined with ABT-737 is synergistic in JAK2-mutant pre-B-ALL (Waibel et al., Cell Reports 2013). We now report that combined targeting of BCL-2 and MCL1 has broad pre-clinical efficacy in adult B-ALL samples with Ph+, Ph- and Ph-like characteristics. Methods S55746 and S63845 were obtained from Servier/Novartis, A1331852 from Guillaume Lessene (WEHI), venetoclax, daunorubicin, dexamethasone (DXM) and tyrosine kinase inhibitors (TKIs) from Selleckchem. Bliss synergy scores were determined using a checkerboard approach to evaluate combinations (previously described Bliss, Ann Appl Biol 1939). Primary ALL cells were obtained from 14 patients (4 Ph+ and 10 Ph-) providing informed consent. Ex vivo cell viability (sytox blue exclusion) at 48h was determined over a 5-log dilution range (1nM-10uM) using drugs alone or in equimolar combinations. For in vivo studies, adult B-ALL patient derived xenografts were performed in NSG; NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice. Results Dual BH3-mimetic targeting of BCL-2 and MCL1 was strongly synergistic (Bliss sum >1000) in SUPB15 (Ph+ BCR-ABL1), BV173 (lymphoid blast crisis BCR-ABL1), MUTZ5 (Ph-like) and MHHCALL4 (Ph-like) B-ALL cell lines. This was more effective than single BH3-mimetic combinations with DXM or TKIs (dasatinib or ruxolitinib) (Fig. A, B). In B-ALL patient samples, combined BCL-2 and MCL1 targeting lowered the LC50 by 10-1000 fold (to LC50<10nM) in 4/4 Ph+ ALL cases and 8/10 Ph- cases. Similarly, combined MCL1 and BCL-XL targeting demonstrated synergy in 3/4 Ph+ cases and 7/10 Ph- cases (to LC50<10nM), confirming remarkable anti-leukemic activity compared to BH3-mimetics alone or chemotherapy (daunorubicin) (Fig. C). BH3-mimetic combination therapy (S55746/S63845) compared favourably in Ph+ ALL cases to S55746 (figure D) or S63845 (Figure E) in combination with dasatinib. Preliminary data using patient-derived xenografts in NSG mice revealed in vivo efficacy of combined S55746 and S63845 therapy against 3 adult B-ALL cases (1 Ph+ and 2 Ph-). Reduction of established ALL in the bone marrow was observed in mice receiving combined S55746/S63845 after one week of treatment (p=<0.05) (Fig. F-H). Conclusions Dual BH3-mimetic targeting of BCL-2 and MCL1 induces synergistic killing of human B-ALL cell lines and primary ALL samples in vitro and rapid cytoreduction in vivo. Simultaneous inhibition of BCL-2 and MCL1 represents a novel and effective approach for targeting Ph+, Ph- and Ph-like B-ALL without need for additional DNA-damaging chemotherapy or kinase inhibition. Our results support the translational investigation of dual BH3-mimetic targeting of BCL-2 and MCL1 in the clinic. Figure legend: BLISS synergy scores for A. Ph+ and B. Ph-like ALL cell lines for drug combinations targeting BCL-2, MCL1, BCR-ABL, JAK1/2 and DXM. C. LC50 activity in primary ALL after 48hr of treatment with BH3 mimetics and combinations targeting BCL-2, MCL1, BCL-XL, compared to daunorubicin (LC50< 10nM red; ~ 100nM yellow; >1uM green). D. Comparison of BH3-mimetics targeting D.BCL-2 or E. MCL1 in combination with dasatinib in Ph+ vs Ph- primary B-ALL samples. Activity expressed as LC50 activity after 48h, with median values shown. Irradiated NSG mice were transplanted with 106 primary B-ALL cells. Engraftment of F. Ph+ and G-H. Ph- B-ALL cells was confirmed at 10 weeks by detection of hCD45 in PB. Mice were then treated with i) vehicle (d1-5), ii) S55746 100mg/kg days 1-5 by gavage, iii) S63845 25 mg/kg IV on days 2 and 4 or iv) S55746+S63845. Mice were euthanized on day 8 and hCD45+ from flushed femurs quantified. Disclosures Chanrion: Servier: Employment. Maragno:servier: Employment. Kraus-Berthier:servier: Employment. Lessene:servier: Research Funding. Roberts:Janssen: Research Funding; AbbVie: Research Funding; Genentech: Research Funding; Walter and Eliza Hall: Employment, Patents & Royalties: Employee of Walter and Eliza Hall Institute of Medical Research which receives milestone and royalty payments related to venetoclax. Geneste:servier: Employment. Wei:Pfizer: Honoraria, Other: Advisory committee; Celgene: Honoraria, Other: Advisory committee, Research Funding; Amgen: Honoraria, Other: Advisory committee, Research Funding; Servier: Consultancy, Honoraria, Other: Advisory committee, Research Funding; Novartis: Honoraria, Other: Advisory committee, Research Funding, Speakers Bureau; Abbvie: Honoraria, Other: Advisory board, Research Funding, Speakers Bureau.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3199-3199 ◽  
Author(s):  
Subhashis Sarkar ◽  
Sachin Chauhan ◽  
Arwen Stikvoort ◽  
Alessandro Natoni ◽  
John Daly ◽  
...  

Abstract Introduction: Multiple Myeloma (MM) is a clonal plasma cell malignancy typically associated with the high and uniform expression of CD38 transmembrane glycoprotein. Daratumumab is a humanized IgG1κ CD38 monoclonal antibody (moAb) which has demonstrated impressive single agent activity even in relapsed refractory MM patients as well as strong synergy with other anti-MM drugs. Natural Killer (NK) cells are cytotoxic immune effector cells mediating tumour immunosurveillance in vivo. NK cells also play an important role during moAb therapy by inducing antibody dependent cellular cytotoxicity (ADCC) via their Fcγ RIII (CD16) receptor. Furthermore, 15% of the population express a naturally occurring high affinity variant of CD16 harbouring a single point polymorphism (F158V), and this variant has been linked to improved ADCC. However, the contribution of NK cells to the efficacy of Daratumumab remains debatable as clinical data clearly indicate rapid depletion of CD38high peripheral blood NK cells in patients upon Daratumumab administration. Therefore, we hypothesize that transiently expressing the CD16F158V receptor using a "safe" mRNA electroporation-based approach, on CD38low NK cells could significantly enhance therapeutic efficacy of Daratumumab in MM patients. In the present study, we investigate the optimal NK cell platform for generating CD38low CD16F158V NK cells which can be administered as an "off-the-shelf"cell therapy product to target both CD38high and CD38low expressing MM patients in combination with Daratumumab. Methods: MM cell lines (n=5) (MM.1S, RPMI-8226, JJN3, H929, and U266) and NK cells (n=3) (primary expanded, NK-92, and KHYG1) were immunophenotyped for CD38 expression. CD16F158V coding m-RNA transcripts were synthesized using in-vitro transcription (IVT). CD16F158V expression was determined by flow cytometry over a period of 120 hours (n=5). 24-hours post electroporation, CD16F158V expressing KHYG1 cells were co-cultured with MM cell lines (n=4; RPMI-8226, JJN3, H929, and U266) either alone or in combination with Daratumumab in a 14-hour assay. Daratumumab induced NK cell fratricide and cytokine production (IFN-γ and TNF-α) were investigated at an E:T ratio of 1:1 in a 14-hour assay (n=3). CD38+CD138+ primary MM cells from newly diagnosed or relapsed-refractory MM patients were isolated by positive selection (n=5), and co-cultured with mock electroporated or CD16F158V m-RNA electroporated KHYG1 cells. CD16F158V KHYG1 were also co-cultured with primary MM cells from Daratumumab relapsed-refractory (RR) patients. Results: MM cell lines were classified as CD38hi (RPMI-8226, H929), and CD38lo (JJN3, U266) based on immunophenotyping (n=4). KHYG1 NK cell line had significantly lower CD38 expression as compared to primary expanded NK cells and NK-92 cell line (Figure 1a). KHYG1 electroporated with CD16F158V m-RNA expressed CD16 over a period of 120-hours post-transfection (n=5) (Figure 1b). CD16F158V KHYG1 in-combination with Daratumumab were significantly more cytotoxic towards both CD38hi and CD38lo MM cell lines as compared to CD16F158V KHYG1 alone at multiple E:T ratios (n=4) (Figure 1c, 1d). More importantly, Daratumumab had no significant effect on the viability of CD38low CD16F158V KHYG1. Moreover, CD16F158V KHYG1 in combination with Daratumumab produced significantly higher levels of IFN-γ (p=0.01) upon co-culture with CD38hi H929 cell line as compared to co-culture with mock KHYG1 and Daratumumab. The combination of CD16F158V KHYG1 with Daratumumab was also significantly more cytotoxic to primary MM cell ex vivo as compared to mock KHYG1 with Daratumumab at E:T ratio of 0.5:1 (p=0.01), 1:1 (p=0.005), 2.5:1 (p=0.003) and 5:1 (p=0.004) (Figure 1e). Preliminary data (n=2) also suggests that CD16F158V expressing KHYG1 can eliminate 15-17% of primary MM cells from Daratumumab RR patients ex vivo. Analysis of more Daratumumab RR samples are currently ongoing. Conclusions: Our study provides the proof-of-concept for combination therapy of Daratumumab with "off-the-shelf" CD38low NK cells transiently expressing CD16F158V for treatment of MM. Notably, this approach was effective against MM cell lines even with low CD38 expression (JJN3) and primary MM cells cultured ex vivo. Moreover, the enhanced cytokine production by CD16F158V KHYG1 cells has the potential to improve immunosurveillance and stimulate adaptive immune responses in vivo. Disclosures Sarkar: Onkimmune: Research Funding. Chauhan:Onkimmune: Research Funding. Stikvoort:Onkimmune: Research Funding. Mutis:Genmab: Research Funding; OnkImmune: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Research Funding; Celgene: Research Funding; Novartis: Research Funding. O'Dwyer:Abbvie: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; BMS: Research Funding; Glycomimetics: Research Funding; Onkimmune: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 679-679
Author(s):  
Michelle J. Cox ◽  
Fabrice Lucien-Matteoni ◽  
Reona Sakemura ◽  
Justin C. Boysen ◽  
Yohan Kim ◽  
...  

Treatment with CD19-directed chimeric antigen receptor T cell (CART19) therapy has resulted in unprecedented clinical outcomes and was FDA-approved in acute lymphoblastic leukemia and non-Hodgkin B-cell lymphoma. However, its success in chronic lymphocytic leukemia (CLL) has been modest to date. An increasing body of evidence indicates that impaired CART cell fitness is the predominant mechanism of the relative dysfunction in CLL. The immunosuppressive microenvironment in CLL is well known and in part may be related to the abundance of circulating extracellular vesicles (EVs) bearing immunomodulatory properties. We hypothesized that CLL-derived EVs contribute to CART cell dysfunction. In this study, we aimed to investigate the interaction between circulating EVs isolated from CLL patient plasma (designated as CLL-derived EVs) and CART19 cells. We enumerated and immunophenotyped circulating EVs from platelet free plasma in untreated patients with CLL. We determined their interaction with CART19 cells using second generation, 41BB co-stimulated, lentiviral transduced CART19 cells generated in the laboratory from normal donors (FMC63-41BBζ CART cells). Our findings indicate that CLL-derived EVs impair normal donor CART19 antigen-specific proliferation against the CD19+ mantle cell lymphoma cell line Jeko-1 (Figure 1A). Next, we characterized CLL-derived EVs using nanoscale flow cytometric analysis of surface proteins and compared to healthy controls. Although the total EV particle count was not different between CLL and healthy controls (Figure 1B), there were significantly higher PD-L1+ EVs in patients with CLL (Figure 1C). Based on these results, we sought to assess the physical interaction between CLL-derived EVs and CART cells from normal individuals. When CLL-derived EVs were co-cultured with CART19 and CLL B cells and imaged with super-resolution microscopy, EVs were localized at the T cell-tumor junction (Figure 1D). Furthermore, CLL-derived EVs are captured by T cells as indicated by a significant reduction in the absolute count of EVs when co-cultured with resting T cells (Figure 1E). Having demonstrated that 1) there is an excess of PD-L1+ EVs in patients with CLL (Figure 1C) and 2) CLL-derived EVs physically interact with CART cells (Figures 1D-E), we sought to establish their functional impact on CART19 cells. Here, CART19 cells were stimulated with irradiated CD19+ JeKo-1 cells at a 1:1 ratio in the presence of increasing concentrations of CLL-derived EVs. There was a significant upregulation of inhibitory receptors such as PD-1 and CTLA-4 on the T cells (Figure 1F). This is associated with a reduction in CART effector cytokines (i.e., TNFβ) at higher concentrations of EVs (Figure 1G), suggesting a state of exhaustion in activated CART19 cells in the presence of CLL-derived EVs. This was further supported by transcriptome interrogation of CART19 cells. Here, CART19 cells were stimulated via 24-hour co-culture with the irradiated CD19+ cell line JeKo-1, in the presence of CLL-derived EVs at ratios of 10:1 and 1:1 EV:CART19 and then isolated by magnetic sorting. RNA sequencing of these activated CART19 cells indicated a significant upregulation of AP-1 (FOS-JUN) and YY1 (Figures 1H), known critical pathways in inducing T cell exhaustion. Finally, to confirm the impact of CLL-derived EVs on CART19 functions in vivo, we used our xenograft model for relapsed mantle cell lymphoma. Here, immunocompromised NOD-SCID-ɣ-/- mice were engrafted with the CD19+ luciferase+ cell line JeKo-1 (1x106 cells I.V. via tail vein injection). Engraftment was confirmed through bioluminescent imaging and mice were randomized to treatment with 1) untreated, 2) CART19 cells, or 3) CART19 cells co-cultured ex vivo with CLL-derived EVs for six hours prior to injection. A single low dose of CAR19 (2.5x105) was injected, to induce relapse. Treatment with CART19 cells that were co-cultured ex vivo with CLL-derived EVs resulted in reduced anti-tumor activity compared to treatment with CART19 alone (Figure 1I). Our results indicate that CLL-derived EVs induce significant CART19 cell dysfunction in vitro and in vivo, through a direct interaction with CART cells resulting in a downstream alteration of their exhaustion pathways. These studies illuminate a novel way through which circulating and potentially systemic EVs can lead to CART cell dysfunction in CLL patients. Disclosures Cox: Humanigen: Patents & Royalties. Sakemura:Humanigen: Patents & Royalties. Parikh:Ascentage Pharma: Research Funding; Janssen: Research Funding; AstraZeneca: Honoraria, Research Funding; Genentech: Honoraria; Pharmacyclics: Honoraria, Research Funding; MorphoSys: Research Funding; AbbVie: Honoraria, Research Funding; Acerta Pharma: Research Funding. Kay:Agios: Other: DSMB; Celgene: Other: Data Safety Monitoring Board; Infinity Pharmaceuticals: Other: DSMB; MorphoSys: Other: Data Safety Monitoring Board. Kenderian:Humanigen: Other: Scientific advisory board , Patents & Royalties, Research Funding; Lentigen: Research Funding; Novartis: Patents & Royalties, Research Funding; Tolero: Research Funding; Morphosys: Research Funding; Kite/Gilead: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 279-279
Author(s):  
Filomena Di Giacomo ◽  
Xujun Wang ◽  
Danilo Fiore ◽  
Lorena Consolino ◽  
Jude Phillip ◽  
...  

Abstract Introduction. T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogeneous malignancy associated with a high risk of treatment failure. Efforts to improve outcomes have focused on underlying genetic defects. However, new evidence suggests that the microenvironment can foster drug resistance/relapses. Identification of factors that contribute to microenvironment-mediated chemo-refractoriness remains an important challenge. Here, we sought to construct an in vitro platform to dissect tumor-host interactions and to optimize drug treatments using Patient-Derived Tumor Xenograft models (PDTX) of high risk adult T-ALL and engineered human endothelial cells. Methods. T-ALL PDTX were established and serially passaged in NSG mice. Engraftment was monitored by flow cytometry of peripheral blood and/or MRI. Mice were sacrificed and leukemic cells were harvested from the spleen/bone marrow. To determine the ex vivo growing conditions, we first cultured a panel of 8 "bona fide" T-ALL cell lines and 11 PDTX cells alone in complete RPMI 20% FCS supplemented with IL2, IL12, IL15 and IL7; or co-cultured with human E4-ORF1 endothelial cells (ECs) without ILs in complete RPMI 20% FCS or serum/cytokine-free media. CDK4/6, MEK, PI3K and JAK inhibitors were used at 0.1 and 1 µM alone and in combination. Cell titer glo, cell titer blue, Annexin-V and S-cell cycle analysis were used as readouts. Total RNA from cells before and after co-culture was extracted for paired-end RNA sequencing on an Illumina HiSeq2500. Results. To study the supporting role of ECs, we first co-cultured ECs with T-ALL cell lines in vitro (serum/cytokine free co-culture) and showed that ECs could reproducibly sustain the viability of 3/8 cell lines (Loucy, KOPTK1, P12 Ichikawa) serum/cytokine-free media. A partial rescue was seen with 3 additional lines (HPB-ALL, CCRF-CEM, CUTLL1), while 2 (KE37, DND41) underwent massive cell death. We next tested whether either ILs or CXCL12 could provide anti-apoptotic signals and demonstrated that KOPTK1 and Loucy were only partially rescued by IL15 or CXCL12. Conversely, IL7, although capable of inducing a robust upregulation of pSTAT5, had no effect (CCRF-CEM and CUTLL1). We then characterized 11 PDTX from 15 high-risk adult T-ALL patients. All PDTX were serially propagated and caused T-ALL in subsequent NSG mice (massive spleen and bone marrow infiltration with extensive paravertebral mass associated with paralysis and multi-organ involvement). Genomic analysis (RNA-seq) demonstrated a high concordance between primary (pre-implant) and PDTX samples. All of them were extensively studied ex vivo, demonstratingthat T-ALL PDTX cells could only survive in ILs supplemented media, even better if enriched of growth factors and supplements for the expansion of human hematopoietic cells. However, when PDTX cells were treated with targeting compounds they all underwent massive apoptosis. Conversely, individual PDTX T-ALL could be selectively rescued by ECs, allowing the construction of individual drug response profile. To extend these data, 7 PDX T-ALL samples were screened against a 430-targeted compound library in supplemented RPMI or Stem Span media. Results indicated differential cell killing and gain (NFKB, BTK) and loss (TP-53, IGF-1R) of targets. Conclusions. These data clearly demonstrate a key role of aberrantly activated vascular niche in T-ALL cell maintenance and drug resistance. We envisage that drug screening of EC+T-ALL will lead to the identification of actionable targets in each individual patient. Our report supports the potential for future personalized curative strategies aimed at targeting both tumor cells and host tissue supporting niche elements disrupting pro-tumorigenic signals within leukemia cell niches. Disclosures Foà: Roche: Consultancy, Speakers Bureau; Genentech: Consultancy; Janssen: Consultancy, Speakers Bureau; Gilead: Consultancy, Speakers Bureau; Amgen: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau; BMS: Consultancy; Pfizer: Speakers Bureau; Ariad: Speakers Bureau. Rafii:Angiocrine Bioscience: Equity Ownership, Other: Non-paid consultant.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3513-3513 ◽  
Author(s):  
James M Bogenberger ◽  
Chang-Xin Shi ◽  
Irma Gonzales ◽  
Rodger E. Tiedemann ◽  
Pierre Noel ◽  
...  

Abstract Abstract 3513 To identify targets for rational combination therapies with 5-Azacytidine (5-Aza) in myeloid malignancies, we utilized high-throughput RNA-interference (RNAi) viability screening. A siRNA library targeting 572 kinases and a custom collection of 289 putative cancer targets, including cell cycle and apoptosis regulatory genes, were screened alone and in combination with 5-Aza in TF-1 and ML-2 myeloid leukemia cell lines to identify synergistic interactions in reducing cell viability. Of the 572 kinases that were individually silenced, less than 1% significantly increased sensitivity to 5-Aza. The kinase library was also screened in combination with 5-Aza in a third myeloid cell line, THP-1, confirming that few kinases sensitize to 5-Aza when inhibited. While few kinases sensitized to 5-Aza, the anti-apoptotic Bcl-2 family of genes emerged as potent sensitizers to 5-Aza from RNAi screens. Therefore, silencing by siRNA of BCL-XL, BCL-2, BCL-W, MCL-1 and BFL-1 was evaluated in combination with 5-Aza treatment in an expanded panel of myeloid cell lines including TF-1, HEL, THP-1, ML-2 and MDS-L. BCL-XL validated as a vulnerability and potent sensitizer to 5-Aza in erythroid leukemia cell lines TF-1 and HEL, whereas MCL-1 was a strong vulnerability in the monocytic leukemia cell line THP-1 and also a moderate sensitizer to 5-Aza in ML-2, THP-1, TF-1 and HEL. Published proteomics data from our group indicate that M6 and M7 leukemias exhibit higher levels of BCL-XL, while additional unpublished data suggest elevated levels of MCL-1 in M4 and M5 leukemias, supporting our functional observations. Additionally, data from the public database Oncomine suggest that BCL-XL expression is elevated in M6 and M7 leukemias while MCL-1 shows a trend towards elevation in M4 and M5 leukemias. Based on RNAi screening results, siRNA validation experiments and proteomic/mRNA expression data, we evaluated the BCL-2/BCL-XL/BCL-W inhibitor ABT-737 in combination with 5-Aza. ABT-737 resulted in dose-dependent sensitization to 5-Aza in all AML-derived cell lines examined (including M7, M6, M5, M4 and M2 FAB subtypes) and in the MDS cell line MDS-L; however, no sensitization was observed in the CML cell line K562. In extensive ex vivo experiments with 17 primary specimens, potent synergy between 5-Aza and ABT-737 was observed in AML, MDS and MPN samples, but not in most CML samples examined. Calculations with CalcuSyn software demonstrate synergy, with combination index values as low as 0.2, between 5-Aza and ABT-737 both ex vivo and in vitro. The combination of 5-Aza with ABT-737 resulted in substantial induction of apoptosis, measured by the induction of cleaved caspase 3 in TF-1 and HL-60 cells, as compared to either compound alone. Interestingly, although siRNA silencing of MCL-1 in combination with 5-Aza was potent across several cell lines, and silencing of BCL-XL preferentially in an erythroid differentiation background, ABT-737 with 5-Aza sensitized across a variety of cell lines and all myeloid primary specimens ex vivo. We suggest that inhibition of anti-apoptotic Bcl-2 family members is a most promising rational combination strategy with 5-Aza for the treatment of leukemias. Our results also highlight the potential utility of more specific anti-apoptotic Bcl-2 family inhibitors in the lineage-specific treatment of myeloid malignancies. Disclosures: Off Label Use: AraC in AML. Experimental Agent MK1775. Mesa:Incyte: Research Funding; Lilly: Research Funding; SBio: Research Funding; Astra Zeneca: Research Funding; NS Pharma: Research Funding; Celgene: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 377-377
Author(s):  
Maryam Ghalandary ◽  
Yuqiao Gao ◽  
Martin Becker ◽  
Diana Amend ◽  
Klaus H. Metzeler ◽  
...  

Abstract Background: The prognosis of patients with acute myeloid leukemia (AML) remains poor and novel therapeutic options are intensively needed. Targeted therapies specifically address molecules with essential function for AML and deciphering novel essential target genes is of utmost importance. Functional genomics via CRISPR\Cas9 technology paves the way for the systematic discovery of novel essential genes, but was so far mostly restricted to studying cell lines in vitro, lacking features of, e.g., primary tumor cells and the in vivo tumor microenvironment. To move closer to the clinical situation in patients, we used the CRISPR\Cas9 technology in patient-derived xenograft (PDX) models of AML in vivo. Methods: Primary tumor cells from seven patients with AML were transplanted into immunocompromised NSG mice and serially transplantable PDX models derived thereof. PDX models were selected which carry the AML specific mutations of interest at variant allele frequencies close to 0.5. PDX cells were lentivirally transduced to express the Cas9 protein and a sgRNA; successfully transduced PDX cells were enriched by flow cytometry gating on a recombinant fluorochrome or by puromycin. The customized sgRNA library was designed using the CLUE (www.crispr-clue.de) platform and cloned into a lentiviral vector with five different sgRNAs per target gene, plus positive and negative controls (Becker et al., Nucleic Acids Res. 2020). PDX cells were lentivirally transduced with the CRISPR/Cas9 sgRNA library, transplanted into NSG mice, grown in vivo and cells re-isolated at advanced AML disease. sgRNA distribution was measured by next generation sequencing and compared to input control using the MAGeCK pipeline. Interesting dropout hits from PDX in vivo screens were validated by fluorochrome-guided competitive in vivo experiments in the PDX models, comparing growth of PDX AML cells with knockout of the gene of interest versus control knockout in the same mouse. PDX cells were transduced with lentiviral vectors expressing a single sgRNA, using in parallel three different sgRNAs per target gene. Targeting and control sgRNAs were marked by different fluorochromes; PDX cells expressing targeting or control sgRNA were mixed at a 1:1 ratio, injected into NSG mice and PDX models competitively grown until advanced disease stage, when cell distributions was determined by flow cytometry. Human AML cell lines were studied in vitro for comparison. Results: In search for genes with essential function in AML, we cloned a small customized sgRNA library targeting 34 genes recurrently mutated in AML and tested the library in two PDX AML models in vivo. From the dropouts, we validated most interesting target genes using fluorochrome-guided competitive in vivo assays. Knockout of NPM1 abrogated in vivo growth in all PDX AML models tested, reproducing the known common essential function of NPM1. KRAS proved an essential function in PDX AML models both with and without an oncogenic mutation in KRAS, although with a stronger effect upon KRAS mutation, suggesting that patients with tumors both with and without KRAS mutation might benefit from treatment inhibiting KRAS. Surprising results were obtained for WT1 and DNMT3A. Both genes are frequently mutated in AML, but most AML cell lines tested in vitro do not show an essential function of any of the two genes, in published knockdown or knockout data, including from the Cancer Dependency Map database. On the contrary, knockout of either WT1 or DNMT3A was shown to enhance growth of AML cell lines and increase leukemogenesis in certain models. In PDX models in vivo, we found a clearly essential function for DNMT3A in all AML samples and WT1 in most samples tested and PDX in vivo results were discordant to cell line in vitro data, suggesting that cell line inherent features and/or the in vivo environment influence the function of WT1 and DNMT3A. Conclusion: We conclude that functional genomics in PDX models in vivo allows discovering essentialities hidden for cell line in vitro approaches. WT1 and DNMT3A harbor the potential to represent attractive therapeutic targets in AML under in vivo conditions, warranting further evaluation. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document