scholarly journals Specific patterns of H3K79 methylation influence genetic interaction of oncogenes in AML

2020 ◽  
Vol 4 (13) ◽  
pp. 3109-3122
Author(s):  
Molly C. Kingsley ◽  
Hongbo M. Xie ◽  
Bo-Rui Chen ◽  
Simone S. Riedel ◽  
Taylor Pastuer ◽  
...  

Abstract Understanding mechanisms of cooperation between oncogenes is critical for the development of novel therapies and rational combinations. Acute myeloid leukemia (AML) cells with KMT2A-fusions and KMT2A partial tandem duplications (KMT2APTD) are known to depend on the histone methyltransferase DOT1L, which methylates histone 3 lysine 79 (H3K79). About 30% of KMT2APTD AMLs carry mutations in IDH1/2 (mIDH1/2). Previous studies showed that 2-hydroxyglutarate produced by mIDH1/2 increases H3K79 methylation, and mIDH1/2 patient samples are sensitive to DOT1L inhibition. Together, these findings suggested that stabilization or increases in H3K79 methylation associated with IDH mutations support the proliferation of leukemias dependent on this mark. However, we found that mIDH1/2 and KMT2A alterations failed to cooperate in an experimental model. Instead, mIDH1/2 and 2-hydroxyglutarate exert toxic effects, specifically on KMT2A-rearranged AML cells (fusions/partial tandem duplications). Mechanistically, we uncover an epigenetic barrier to efficient cooperation; mIDH1/2 expression is associated with high global histone 3 lysine 79 dimethylation (H3K79me2) levels, whereas global H3K79me2 is obligate low in KMT2A-rearranged AML. Increasing H3K79me2 levels, specifically in KMT2A-rearrangement leukemias, resulted in transcriptional downregulation of KMT2A target genes and impaired leukemia cell growth. Our study details a complex genetic and epigenetic interaction of 2 classes of oncogenes, IDH1/2 mutations and KMT2A rearrangements, that is unexpected based on the high percentage of IDH mutations in KMT2APTD AML. KMT2A rearrangements are associated with a trend toward lower response rates to mIDH1/2 inhibitors. The substantial adaptation that has to occur for 2 initially counteracting mutations to be tolerated within the same leukemic cell may provide at least a partial explanation for this observation.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 365-365
Author(s):  
Hilmar Quentmeier ◽  
Sonja Röhrs ◽  
Wilhelm G Dirks ◽  
Claus Meyer ◽  
Rolf Marschalek ◽  
...  

Abstract Abstract 365 Background: Translocations of the Mixed Lineage Leukemia (MLL) gene occur in a subset (5%) of acute myeloid leukemia (AML) and in mixed phenotype acute leukemia in infancy, a disease with extremely poor prognosis. Animal model systems show that MLL gain of function mutations may contribute to leukemogenesis. Wild-type MLL carries histone methyltransferase activity and affects specific target genes, such us HOXA cluster genes. While the more than three dozen MLL fusion proteins known today exert different specific functions, they finally induce transcription of individual target genes. Consequently, acute lymphoblastic leukemias (ALL) with MLL mutations (MLLmu) exhibit typical gene expression profiles including high-level expression of HOXA cluster genes. Aim of this study was to find a correlation between the MLL mutational status and tumor suppressor gene methylation/expression in acute leukemia cell lines. Results: Using MS-MLPA (methylation-specific multiplex ligation-dependent probe amplification assay), methylation of 24 different TSG was analyzed in 28 MLLmu and MLLwt acute leukemia cell lines. 1.8/24 TSG were methylated in MLLmu AML cells, 6.2/24 TSG were methylated in MLLwt AML cells. Hypomethylation and expression of the tumor suppressor genes (TSG) BEX2, IGSF4 and TIMP3 turned out to be characteristic of MLLmu acute myeloid leukemia (AML) cell lines. MLL wild-type (MLLwt) AML cell lines displayed hypermethylated TSG promoters resulting in transcriptional silencing. Demethylating agents and inhibitors of histone deacetylases restored expression of BEX2, IGSF4 and TIMP3 confirming epigenetic silencing of these genes in MLLwt cells. The positive correlation between MLL translocation, TSG hypomethylation and expression suggested that MLL fusion proteins were responsible for dysregulation of TSG expression in MLLmu cells. This concept was supported by our observation that Bex2 mRNA levels in MLL-ENL transgenic mouse cell lines required expression of the MLL fusion gene. Conclusion: These results suggest that the conspicuous expression of the TSG BEX2, IGSF4 and TIMP3 in MLLmu AML cell lines is the consequence of altered epigenetic properties of MLL fusion proteins. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4811-4811
Author(s):  
Joanna S. Yi ◽  
Alex Federation ◽  
Jun Qi ◽  
Sirano Dhe-Paganon ◽  
Michael Hadler ◽  
...  

Abstract Cooperation between several epigenetic modulators defines MLL-rearranged leukemia as an epigenomic-driven cancer. Wild type MLL catalyzes trimethylation of lysine 4 on histone 3 from the methyl donor S-adenosylmethionine (SAM) at homeobox and other genes important for hematopoiesis, promoting their expression during development. However, in MLL-rearrangements, its methyltransferase domain is ubiquitously lost and replaced with >70 known fusion partners. Many of these fusion partners recruit DOT1L, the only known SAM-dependent lysine methyltransferase responsible for the methylation of lysine 79 of histone 3 (H3K79)—a mark associated with most actively transcribed genes. Therefore, the recruitment of DOT1L by MLL fusion partners to MLL-target genes leads to aberrant H3K79 hypermethylation at these loci, resulting in inappropriate gene expression and leukemogenesis. DOT1L as a therapeutic target in MLL has been genetically validated by several groups, leading to the development of SAM-competitive small molecule inhibitors of DOT1L. These inhibitors exhibit excellent biochemical activity and selectivity, yet have delayed cellular activity and needing relatively high doses, with viability effects requiring 7-10 days and EC50s for H3K79 methylation depletion of 1-3 μM in cell lines. In animal studies, this translates to a modest survival benefit while requiring high doses through continuous osmotic subcutaneous infusion. Further optimization of DOT1L inhibitors is therefore needed. To date, development of DOT1L inhibitors has been slow, perhaps related to inadequacy of discovery chemistry assay technologies. All biochemical assays are radioactivity-based and are not miniaturizeable; low-throughput and delayed cellular effects of DOT1L inhibition all hamper the discovery of improved inhibitors. Therefore a pressing need towards improved DOT1L inhibitor discovery is a robust, accessible, and rapid profiling platform. Toward this goal, we synthesized both FITC- and biotin-tagged DOT1L probe ligands. We confirmed by structural studies that binding of the probes were similar to our previously published inhibitor, depleted H3K79 methylation, and had antiproliferative effects in MLL-rearranged cell lines. We then utilized the probes to devise two non-radioactive, orthogonal biochemical assays to competitively profile putative inhibitors: one employing bead-based, proxmity fluorescence technology and the second using fluorescence polarization technology. These assays are robust and adaptable to high-throughput screening. We also designed a miniaturizable high-content imaging, immunofluorescence-based assay to assess the effect of DOT1L inhibitors on H3K79 methylation, reporting cellular IC50s after just four days of treatment. These three assays were validated against three known DOT1L inhibitors of different potencies, accurately differentiating between the compounds. Together, these orthogonal assays define an accessible platform capability to discover and optimize DOT1L inhibitors. Our platform rank-ordered a library of SAM derivatives that we synthesized, indicating that large substituents off the SAM base does not affect DOT1L binding. We also explored other features of the SAM core structure, identifying several chlorinated probes that had increased cellular potency (IC50 values ~10nM) relative to the initial compounds published, without losing specificity for DOT1L. The inhibitory effect on MLL-target gene expression correlated to the H3K79me2 decrease reported in high content assay, validating that our high-content assay accurately reports on downstream biology seen later in treatment. And as expected, the high-content potencies of our chlorinated DOT1L probes also correlated to increased anti-proliferative effect in MLL cells. Overall, we utilized chemistry, biology, and chemical biology tools to develop this profiling platform capability for more rapid discovery and optimization of small molecule DOT1L inhibitors. These assays can additionally be used to screen for non-SAM competitive inhibitors in high-throughput fashion. Furthermore, the DOT1L inhibitors and probes synthesized here (available as open-source tools) are useful in deeper mechanistic studies of the DOT1L complex and its role in MLL. Disclosures Armstrong: Epizyme: Consultancy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5132-5132
Author(s):  
Wenbin Gu ◽  
Meng Li ◽  
Liang Liang ◽  
Jian Zhang ◽  
Chongye Guo ◽  
...  

Abstract The t(8;21) chromosome translocation frequently occurs in acute myeloid leukemia (AML), resulting in an in-frame fusion between the DNA-binding domain of AML1 and almost the entire of ETO gene. The fusion AML1-ETO protein is thought to play a critical role in the abnormal proliferation and differentiation of myeloid leukemia cells, such as Kasumi-1 and SKNO-1 cells. Glucocorticoids (GC) can induce apoptosis in these cells at low concentrations, whereas most other myeloid leukemia cell lines are resistant to glucocorticoid-induced apoptosis. To experimentally address possible sensitive mechanisms in leukemia cells with AML1-ETO translocation, we generated aGC-resistant Kasumi-1 cell line by induction of 10-6 M dexamethasone (Dex) for three weeks. The IC50 of Dex to cells is increased from 2.5×10-8 M for original GC-sensitive Kasumi-1 cell line ( K-S cell line) to more than 1×10-5 M for induced GC-resistant Kasumi-1 cell line (K-R cell line). Since GC resistance often results from mutations in the glucocorticoid receptor (GR), all the exons of GR gene were sequenced and no mutation was found in K-R cells. Comparing to those in K-S cells, the GR protein level didn't decrease in K-R cells after 2h, 4h, 8h, 12h and 24h exposure to dexamethasone. Given that the difference of direct GR downstream genes between K-S and K-R cells may play a key role in the GC sensitivity, we systematically analyzed the changes of gene expression induced by Dex versus ethanol vehicle for 8h in K-S and K-R cells by high throughput RNA sequencing. The time point of 8h was selected according to the expression peaks of several foregone GR target genes after Dex induction. There were found 32 genes conversely regulated in K-S and K-R cells, including 14 mRNAs and 18 long non-coding RNAs. Pathway analysis indicated that the upregulated genes in K-S cells might promote the AML1-ETO fusion protein degradation by proteasomes, while the component genes of this pathway were downregulated in K-R cells. Further validation and function studies of these mRNAs and long non-coding RNAs are ongoing. Our data suggested that the downstream targets of GR among GC-sensitive and -resistant Kasumi-1 cells were significant different and they may contribute to the GC sensitivity and resistance by degradation or reservation of AML-ETO fusion protein and the regulation of apoptosis in t(8;21) leukemia cell subtype. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2017 ◽  
Vol 130 (6) ◽  
pp. 732-741 ◽  
Author(s):  
Michael D. Amatangelo ◽  
Lynn Quek ◽  
Alan Shih ◽  
Eytan M. Stein ◽  
Mikhail Roshal ◽  
...  

Key Points Enasidenib inhibits mIDH2, leading to leukemic cell differentiation with emergence of functional mIDH2 neutrophils in rrAML patients. RAS pathway mutations and increased mutational burden overall are associated with a decreased response rate to mIDH2 inhibition.


Blood ◽  
1991 ◽  
Vol 77 (9) ◽  
pp. 2031-2036 ◽  
Author(s):  
H Asou ◽  
S Tashiro ◽  
K Hamamoto ◽  
A Otsuji ◽  
K Kita ◽  
...  

Abstract A novel leukemic cell line with an 8;21 chromosome translocation, designated as Kasumi-1, was established from the peripheral blood of a 7-year-old boy suffering from acute myeloid leukemia (AML). The Kasumi- 1 cells were positive for myeloperoxidase showing a morphology of myeloid maturation. The response in proliferation assay was observed in the culture with interleukin-3 (IL-3), IL-6, granulocyte colony- stimulating factor (G-CSF), and granulocytemacrophage CSF (GM-CSF), but not with IL-1 or IL-5. Neither granulocytic nor eosinophilic maturation was observed in the liquid culture by the addition of dimethyl sulfoxide, G-CSF, or IL-5, respectively. In contrast, induction of macrophagelike cells was seen by the addition of phorbol ester. This is the first report of a human AML cell line with t(8;21) that has characteristics of myeloid and macrophage lineages. The cell line could be a useful tool for elucidating the pathophysiology of AML with t(8;21).


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3688-3688
Author(s):  
Jonathan L. Metts ◽  
Heath L. Bradley ◽  
Neil P. Shah ◽  
Reuben Kapur ◽  
Jack L. Arbiser ◽  
...  

Abstract Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the 2nd most common in children. Despite advances in our understanding of AML biology, long term survival remains suboptimal. Current therapy primarily involves high dose cytotoxic chemotherapy and possible allogeneic stem cell transplant, both of which are heavily myelosuppressive and carry some treatment related mortality. The FLT3/ITD mutation is found in 20-30% of adults and 10-20% of children with AML, and despite intensive therapy survival outcomes are dismal. Recent strategies using targeted therapies (e.g. FLT3 tyrosine kinase inhibitors-TKIs) have so far yielded modest responses, and most relapsed/refractory patients will still die of their leukemia. Thus selective agents targeting FLT3 mutated AML but not benign hematopoiesis are needed. A large portion of AML, including those with FLT3/ITD, has elevated levels of reactive oxygen species (ROS), and AML with high ROS is highly proliferative. Interestingly, mislocalization of mutant type III receptor tyrosine kinases (RTKs, e.g. FLT3 and c-KIT) occurs in leukemia. In FLT3/ITD, a portion of underglycosylated RTK accumulates on the endoplasmic reticulum (ER) in a microenvironment with high levels of localized ROS generated from ER-bound NADPH Oxidase 4 (Nox4) and through tight connections with mitochondria. ROS has been demonstrated in recent years to be an integral part of cell signaling, typically through suppression of protein tyrosine phosphatases. Therefore, we hypothesized that elevated ROS plays an important role in leukemic cell signaling in FLT3/ITD+ AML. To this end, we have investigated the effects of the Nox4 inhibitor imipramine blue (IB), a novel potent agent from the class of triphenylmethane dyes (Munson et al, Sci Transl Med, Vol. 4, 2012). We used FLT3/ITD+ AML cell lines (MV4-11, MOLM-14), cell lines without FLT3/ITD (OCI-AML3, K562, HEL, HL-60), and Ba/F3 and 32D cells transduced with FLT3 and c-KIT mutants, respectively. We screened inhibitors of mitochondrial complex I and NOX inhibitors to determine their effects on ROS levels by H2-DCF-DA staining/flow cytometry and on cell viability by trypan blue exclusion assay. While all mitochondrial and NOX4 inhibitors tested effectively reduced total cellular ROS levels, only Nox4 inhibition with IB achieved selective cytotoxicity for FLT3/ITD+ cell lines with high potency (IC50 =125 nM in MV4-11). The Annexin V assay showed that IB causes cell death through an apoptotic mechanism in MV4-11 cells. To determine effects of Nox4 inhibition on leukemic cell signaling, specifically on protein tyrosine phosphatases (PTPs), we studied the signal transducer and activator of transcription 5 (STAT5). We observed phosphorylated STAT5 (pSTAT5) levels by Western blot, and sodium orthovanadate (Na3VO4) was used for PTP inhibition. IB caused dose dependent decreases in pSTAT5 levels after 4 hours of exposure, and this effect was reversed when Na3VO4 was added, implicating reactivated PTPs as the cause of pSTAT5 suppression. To determine the downstream effects of STAT5 inhibition by IB, STAT5 target genes were evaluated by qRT-PCR. Four hour IB treatment caused decreased expression of common STAT5 target genes (Pim1, c-Myc, Cish) indicating effective suppression of STAT5 function. To optimize cytotoxicity, we then combined IB with the STAT5 inhibitor pimozide. A combination of 75 nM IB/5µM pimozide was highly synergistic in MV4-11 (5 fold higher cytotoxicity over individual drugs, 3 fold higher than their additive effect). IB/pimozide selectively killed FLT3/ITD+ AML cell lines while sparing AML cells without FLT3/ITD and benign CD34+ cord blood cells. IB and IB/pimozide were also equally effective in killing Ba/F3 FLT3/ITD cells with point mutations causing resistance to TKIs and selectively killed 32D cells with c-KIT (D814V) mutation over those with wild type c-KIT. Thus we have shown that the Nox4 inhibitor IB is a potent and selective inducer of apoptosis for FLT3/ITD+ AML in vitro, and the novel combination of IB and pimozide selectively targets FLT3/ITD and c-KIT positive mutants, including TKI-resistant FLT3/ITD mutants. We propose that IB alone or in combination with pimozide represents a novel therapeutic strategy, and testing in primary patient samples and in vivo models are currently underway. Disclosures Shah: Plexxikon Inc.: Research Funding; Pfizer: Research Funding; Bristol-Myers Squibb: Research Funding. Arbiser:ABBY Therapeutics: Other: Jack L Arbiser is listed as inventor on a US Patent for imipramine blue. He is cofounder of ABBY Therapeutics, which has licensed imipramine blue from Emory University.


Blood ◽  
2013 ◽  
Vol 121 (3) ◽  
pp. 499-509 ◽  
Author(s):  
Yonghui Li ◽  
Li Gao ◽  
Xufeng Luo ◽  
Lili Wang ◽  
Xiaoning Gao ◽  
...  

Abstract t(8;21) is one of the most frequent chromosomal translocations occurring in acute myeloid leukemia (AML) and is considered the leukemia-initiating event. The biologic and clinical significance of microRNA dysregulation associated with AML1/ETO expressed in t(8;21) AML is unknown. Here, we show that AML1/ETO triggers the heterochromatic silencing of microRNA-193a (miR-193a) by binding at AML1-binding sites and recruiting chromatin-remodeling enzymes. Suppression of miR-193a expands the oncogenic activity of the fusion protein AML-ETO, because miR-193a represses the expression of multiple target genes, such as AML1/ETO, DNMT3a, HDAC3, KIT, CCND1, and MDM2 directly, and increases PTEN indirectly. Enhanced miR-193a levels induce G1 arrest, apoptosis, and restore leukemic cell differentiation. Our study identifies miR-193a and PTEN as targets for AML1/ETO and provides evidence that links the epigenetic silencing of tumor suppressor genes miR-193a and PTEN to differentiation block of myeloid precursors. Our results indicated a feedback circuitry involving miR-193a and AML1/ETO/DNMTs/HDACs, cooperating with the PTEN/PI3K signaling pathway and contributing to leukemogenesis in vitro and in vivo, which can be successfully targeted by pharmacologic disruption of the AML1/ETO/DNMTs/HDACs complex or enhancement of miR-193a in t(8;21)–leukemias.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2702-2702
Author(s):  
Jie Xu ◽  
Wu Zhang ◽  
Xiaojing Yan ◽  
Chen Zhao ◽  
Jiang Zhu ◽  
...  

Abstract NPM1 is one of the most frequent acquired mutated genes in acute myeloid leukemia (AML). Previous studies have shown that NPM1 mutation (NPMc+) established the distinctive gene expression signatures, which were associated with mixed lineage leukemia (MLL)-target genes, like MEIS1 and HOXA cluster. In AML carrying MLL fusion-oncoproteins, DOT1L-mediated histone 3 lysine 79 (H3K79) methylation is implicated in the regulation of MLL-target genes. Compared with MLL abnormalities, NPM1 variants preserve the similar transcriptional characteristics. However, whether NPM1 mutation could affect the histone modification of H3K79 methylation is unknown. In this study, we showed that NPM1 mutation dysregulated the homeostasis of hematopoietic stem and progenitor cells and resulted in ageing-related myeloproliferation in NPMc+ transgenic mouse model. Interestingly, through scanning the chromatin modification related gene profiling, di- and tri- methylated H3K79 were significantly elevated in bone marrow (BM) Lin-Sca-1+c-Kit+ cells (LSKs) of NPMc+ mice comparing to wild type (WT). Meanwhile, in the leukemia cell lines and AML primary BM samples, we confirmed that NPM1 mutated cells expressed the higher level of H3K79 methylation. In vitro assays also indicated that the decrease or increase of methylated H3K79 could be regulated respectively by knockdown or overexpression of NPM1 mutant but not WT. Importantly, with DOT1L inhibitor treatment, reduced di- and tri- methylated H3K79 was observed in OCI-AML3 (NPMc+) strains but not OCI-AML2 (NPM1 WT) cells. In contrast with OCI-AML2, DOT1L inhibitor significantly promoted the cell apoptosis and restrained the cell cycle of OCI-AML3. Moreover, by the means of murine BM colony formation assay, DOT1L inhibitor obviously weakened myeloid cell proliferation in NPMc+ mice, while colony number in WT group did not change. Also, leukemia development was repressed in OCI-AML3-xenografted NOD/SCID mice with the treatment of DOT1L inhibitor. Taken together, NPM1 mutation contributes to hematological dysfunction by disrupting H3K79 methylation, which could be largely attenuated by DOT1L inhibitor. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Marc García-Montolio ◽  
Cecilia Ballaré ◽  
Enrique Blanco ◽  
Arantxa Gutiérrez ◽  
Sergi Aranda ◽  
...  

Polycomb group (PcG) of proteins are a group of highly conserved epigenetic regulators involved in many biological functions, such as embryonic development, cell proliferation, and adult stem cell determination. PHD finger protein 19 (PHF19) is an associated factor of Polycomb repressor complex 2 (PRC2), often upregulated in human cancers. In particular, myeloid leukemia cell lines show increased levels of PHF19, yet little is known about its function. Here, we have characterized the role of PHF19 in myeloid leukemia cells. We demonstrated that PHF19 depletion decreases cell proliferation and promotes chronic myeloid leukemia (CML) differentiation. Mechanistically, we have shown how PHF19 regulates the proliferation of CML through a direct regulation of the cell cycle inhibitor p21. Furthermore, we observed that MTF2, a PHF19 homolog, partially compensates for PHF19 depletion in a subset of target genes, instructing specific erythroid differentiation. Taken together, our results show that PHF19 is a key transcriptional regulator for cell fate determination and could be a potential therapeutic target for myeloid leukemia treatment.


Blood ◽  
1998 ◽  
Vol 91 (9) ◽  
pp. 3127-3133 ◽  
Author(s):  
Melina Carapeti ◽  
Ricardo C.T. Aguiar ◽  
John M. Goldman ◽  
Nicholas C.P. Cross

Chromosomal abnormalities of band 8p11 are associated with a distinct subtype of acute myeloid leukemia with French-American-British M4/5 morphology and prominent erythrophagocytosis by the blast cells. This subtype is usually associated with the t(8;16)(p11;p13), a translocation that has recently been shown to result in a fusion between the MOZ and CBP genes. We have cloned the inv(8)(p11q13), an abnormality associated with the same leukemia phenotype, and found a novel fusion between MOZ and the nuclear receptor transcriptional coactivatorTIF2/GRIP-1/NCoA-2. This gene has not previously been implicated in the pathogenesis of leukemia or other malignancies. MOZ-TIF2 retains the histone acetyltransferase homology domains of both proteins and also the CBP binding domain of TIF2. We speculate that the apparently identical leukemia cell phenotype observed in cases with the t(8;16) and the inv(8) arises by recruitment of CBP by MOZ-TIF2, resulting in modulation of the transcriptional activity of target genes by a mechanism involving abnormal histone acetylation.


Sign in / Sign up

Export Citation Format

Share Document