scholarly journals Beryllium-induced lung disease exhibits expression profiles similar to sarcoidosis

2016 ◽  
Vol 47 (6) ◽  
pp. 1797-1808 ◽  
Author(s):  
Li Li ◽  
Lori J. Silveira ◽  
Nabeel Hamzeh ◽  
May Gillespie ◽  
Peggy M. Mroz ◽  
...  

A subset of beryllium-exposed workers develop beryllium sensitisation (BeS) which precedes chronic beryllium disease (CBD). We conducted an in-depth analysis of differentially expressed candidate genes in CBD.We performed Affymetrix GeneChip 1.0 ST array analysis on peripheral blood mononuclear cells (PBMCs) from 10 CBD, 10 BeS and 10 beryllium-exposed, nondiseased controls stimulated with BeSO4or medium. The differentially expressed genes were validated by high-throughput real-time PCR in this group and in an additional group of cases and nonexposed controls. The functional roles of the top candidate genes in CBD were assessed using a pharmacological inhibitor. CBD gene expression data were compared with whole blood and lung tissue in sarcoidosis from the Gene Expression Omnibus.We confirmed almost 450 genes that were significantly differentially expressed between CBD and controls. The top enrichment of genes was for JAK (Janus kinase)–STAT (signal transducer and activator of transcription) signalling. A JAK2 inhibitor significantly decreased tumour necrosis factor-α and interferon-γ production. Furthermore, we found 287 differentially expressed genes overlapped in CBD/sarcoidosis. The top shared pathways included cytokine–cytokine receptor interactions, and Toll-like receptor, chemokine and JAK–STAT signalling pathways.We show that PBMCs demonstrate differentially expressed gene profiles relevant to the immunnopathogenesis of CBD. CBD and sarcoidosis share similar differential expression of pathogenic genes and pathways.

Author(s):  
Daniel He ◽  
Chen Xi Yang ◽  
Basak Sahin ◽  
Amrit Singh ◽  
Casey P. Shannon ◽  
...  

Abstract Background Blood has proven to be a useful resource for molecular analysis in numerous biomedical studies, with peripheral blood mononuclear cells (PBMCs) and whole blood being the major specimen types. However, comparative analyses between these two major compartments (PBMCs and whole blood) are few and far between. In this study, we compared gene expression profiles of PBMCs and whole blood samples obtained from research subjects with or without mild allergic asthma. Methods Whole blood (PAXgene) and PBMC samples were obtained from 5 mild allergic asthmatics and 5 healthy controls. RNA from both sample types was measured for expression of 730 immune-related genes using the NanoString nCounter platform. Results We identified 64 uniquely expressed transcripts in whole blood that reflected a variety of innate, humoral, and adaptive immune processes, and 13 uniquely expressed transcripts in PBMCs which were representative of T-cell and monocyte-mediated processes. Furthermore, analysis of mild allergic asthmatics versus non-asthmatics revealed 47 differentially expressed transcripts in whole blood compared to 1 differentially expressed transcript in PBMCs (FDR < 0.25). Finally, through simultaneous measurement of PBMC proteins on the nCounter assay, we identified CD28 and OX40 (TNFRSF4), both of which are critical co-stimulatory molecules during T-cell activation, as significantly upregulated in asthmatics. Conclusions Whole blood RNA preserved in PAXgene tubes is excellent for producing gene expression data with minimal variability and good sensitivity, suggesting its utility in multi-centre studies requiring measurement of blood gene expression.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ruoxi Yu ◽  
Yin Yang ◽  
Yuanyuan Han ◽  
Pengwei Hou ◽  
Yingshuai Li ◽  
...  

Objectives. Differences among healthy subjects and associated disease risks are of substantial interest in clinical medicine. According to the theory of “constitution-disease correlation” in traditional Chinese medicine, we try to find out if there is any connection between intolerance of cold in Yang deficiency constitution and molecular evidence and if there is any gene expression basis in specific disorders. Methods. Peripheral blood mononuclear cells were collected from Chinese Han individuals with Yang deficiency constitution (n=20) and balanced constitution (n=8) (aged 18–28) and global gene expression profiles were determined between them using the Affymetrix HG-U133 Plus 2.0 array. Results. The results showed that when the fold change was ≥1.2 and q ≤ 0.05, 909 genes were upregulated in the Yang deficiency constitution, while 1189 genes were downregulated. According to our research differential genes found in Yang deficiency constitution were usually related to lower immunity, metabolic disorders, and cancer tendency. Conclusion. Gene expression disturbance exists in Yang deficiency constitution, which corresponds to the concept of constitution and gene classification. It also suggests people with Yang deficiency constitution are susceptible to autoimmune diseases, enteritis, arthritis, metabolism disorders, and cancer, which provides molecular evidence for the theory of “constitution-disease correlation.”


2012 ◽  
Vol 39 (5) ◽  
pp. 916-928 ◽  
Author(s):  
BERTALAN MESKO ◽  
SZILARD POLISKA ◽  
SZILVIA SZAMOSI ◽  
ZOLTAN SZEKANECZ ◽  
JANOS PODANI ◽  
...  

Objective.Tocilizumab, a humanized anti-interleukin-6 receptor monoclonal antibody, has recently been approved as a biological therapy for rheumatoid arthritis (RA) and other diseases. It is not known if there are characteristic changes in gene expression and immunoglobulin G glycosylation during therapy or in response to treatment.Methods.Global gene expression profiles from peripheral blood mononuclear cells of 13 patients with RA and active disease at Week 0 (baseline) and Week 4 following treatment were obtained together with clinical measures, serum cytokine levels using ELISA, and the degree of galactosylation of the IgG N-glycan chains. Gene sets separating responders and nonresponders were tested using canonical variates analysis. This approach also revealed important gene groups and pathways that differentiate responders from nonresponders.Results.Fifty-nine genes showed significant differences between baseline and Week 4 and thus correlated with treatment. Significantly, 4 genes determined responders after correction for multiple testing. Ten of the 12 genes with the most significant changes were validated using real-time quantitative polymerase chain reaction. An increase in the terminal galactose content of N-linked glycans of IgG was observed in responders versus nonresponders, as well as in treated samples versus samples obtained at baseline.Conclusion.As a preliminary report, gene expression changes as a result of tocilizumab therapy in RA were examined, and gene sets discriminating between responders and nonresponders were found and validated. A significant increase in the degree of galactosylation of IgG N-glycans in patients with RA treated with tocilizumab was documented.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 244 ◽  
Author(s):  
Antonio Victor Campos Coelho ◽  
Rossella Gratton ◽  
João Paulo Britto de Melo ◽  
José Leandro Andrade-Santos ◽  
Rafael Lima Guimarães ◽  
...  

HIV-1 infection elicits a complex dynamic of the expression various host genes. High throughput sequencing added an expressive amount of information regarding HIV-1 infections and pathogenesis. RNA sequencing (RNA-Seq) is currently the tool of choice to investigate gene expression in a several range of experimental setting. This study aims at performing a meta-analysis of RNA-Seq expression profiles in samples of HIV-1 infected CD4+ T cells compared to uninfected cells to assess consistently differentially expressed genes in the context of HIV-1 infection. We selected two studies (22 samples: 15 experimentally infected and 7 mock-infected). We found 208 differentially expressed genes in infected cells when compared to uninfected/mock-infected cells. This result had moderate overlap when compared to previous studies of HIV-1 infection transcriptomics, but we identified 64 genes already known to interact with HIV-1 according to the HIV-1 Human Interaction Database. A gene ontology (GO) analysis revealed enrichment of several pathways involved in immune response, cell adhesion, cell migration, inflammation, apoptosis, Wnt, Notch and ERK/MAPK signaling.


2021 ◽  
Author(s):  
Li Guoquan ◽  
Du Junwei ◽  
He Qi ◽  
Fu Xinghao ◽  
Ji Feihong ◽  
...  

Abstract BackgroundHashimoto's thyroiditis (HT), also known as chronic lymphocytic thyroiditis, is a common autoimmune disease, which mainly occurs in women. The early manifestation was hyperthyroidism, however, hypothyroidism may occur if HT was not controlled for a long time. Numerous studies have shown that multiple factors, including genetic, environmental, and autoimmune factors, were involved in the pathogenesis of the disease, but the exact mechanisms were not yet clear. The aim of this study was to identify differentially expressed genes (DEGs) by comprehensive analysis and to provide specific insights into HT. MethodsTwo gene expression profiles (GSE6339, GSE138198) about HT were downloaded from the Gene Expression Omnibus (GEO) database. The DEGs were assessed between the HT and normal groups using the GEO2R. The DEGs were then sent to the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The hub genes were discovered using Cytoscape and CytoHubba. Finally, NetworkAnalyst was utilized to create the hub genes' targeted microRNAs (miRNAs). ResultsA total of 62 DEGs were discovered, including 60 up-regulated and 2 down-regulated DEGs. The signaling pathways were mainly engaged in cytokine interaction and cytotoxicity, and the DEGs were mostly enriched in immunological and inflammatory responses. IL2RA, CXCL9, IL10RA, CCL3, CCL4, CCL2, STAT1, CD4, CSF1R, and ITGAX were chosen as hub genes based on the results of the protein-protein interaction (PPI) network and CytoHubba. Five miRNAs, including mir-24-3p, mir-223-3p, mir-155-5p, mir-34a-5p, mir-26b-5p, and mir-6499-3p, were suggested as likely important miRNAs in HT. ConclusionsThese hub genes, pathways and miRNAs contribute to a better understanding of the pathophysiology of HT and offer potential treatment options for HT.


2020 ◽  
Author(s):  
Na Li ◽  
Ru-feng Bai ◽  
Chun Li ◽  
Li-hong Dang ◽  
Qiu-xiang Du ◽  
...  

Abstract Background: Muscle trauma frequently occurs in daily life. However, the molecular mechanisms of muscle healing, which partly depend on the extent of the damage, are not well understood. This study aimed to investigate gene expression profiles following mild and severe muscle contusion, and to provide more information about the molecular mechanisms underlying the repair process.Methods: A total of 33 rats were divided randomly into control (n = 3), mild contusion (n = 15), and severe contusion (n = 15) groups; the contusion groups were further divided into five subgroups (1, 3, 24, 48, and 168 h post-injury; n = 3 per subgroup). Then full genome microarray of RNA isolated from muscle tissue was performed to access the gene expression changes during healing process.Results: A total of 2,844 and 2,298 differentially expressed genes were identified in the mild and severe contusion groups, respectively. The analysis of the overlapping differentially expressed genes showed that there are common mechanisms of transcriptomic repair of mild and severe contusion within 48 h post-contusion. This was supported by the results of principal component analysis, hierarchical clustering, and weighted gene co‐expression network analysis of the 1,620 coexpressed genes in mildly and severely contused muscle. From these analyses, we discovered that the gene profiles in functional modules and temporal clusters were similar between the mild and severe contusion groups; moreover, the genes showed time-dependent patterns of expression, which allowed us to identify useful markers of wound age. We then performed an analysis of the functions of genes (including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway annotation, and protein–protein interaction network analysis) in the functional modules and temporal clusters, and the hub genes in each module–cluster pair were identified. Interestingly, we found that genes downregulated within 24−48 h of the healing process were largely associated with metabolic processes, especially oxidative phosphorylation of reduced nicotinamide adenine dinucleotide phosphate, which has been rarely reported. Conclusions: These results improve our understanding of the molecular mechanisms underlying muscle repair, and provide a basis for further studies of wound age estimation.


2017 ◽  
Vol 102 (1-2) ◽  
pp. 39-46 ◽  
Author(s):  
Woo Young Kim ◽  
Jae Bok Lee ◽  
Seung Pil Jung ◽  
Hoon Yub Kim ◽  
Sang Uk Woo ◽  
...  

The objective was to identify gene expression profile of papillary thyroid microcarcinoma. To help improve diagnosis of papillary thyroid microcarcinoma, we performed gene expression profiling and compared it to pair normal thyroid tissues. We performed microarray analysis with 6 papillary thyroid microcarcinoma and 6 pair normal thyroid tissues. Differentially expressed genes were selected using paired t test, linear models for microarray data, and significance analysis of microarrays. Real-time quantitative reverse transcription–polymerase chain reaction was used to validate the representative 10 genes (MET, TIMP1, QPCT, PROS1, LRP4, SDC4, CITED1, DPP4, LRRK2, RUNX2). We identified 91 differentially expressed genes (84 upregulated and 7 downregulated) in the gene expression profile and validated 10 genes of the profile. We identified a significant genetic difference between papillary thyroid microcarcinoma and normal tissue by 10 upregulated genes greater than 2-fold (P &lt; 0.05).


2019 ◽  
Vol 80 (04) ◽  
pp. 240-249
Author(s):  
Jiajia Wang ◽  
Jie Ma

Glioblastoma multiforme (GBM), an aggressive brain tumor, is characterized histologically by the presence of a necrotic center surrounded by so-called pseudopalisading cells. Pseudopalisading necrosis has long been used as a prognostic feature. However, the underlying molecular mechanism regulating the progression of GBMs remains unclear. We hypothesized that the gene expression profiles of individual cancers, specifically necrosis-related genes, would provide objective information that would allow for the creation of a prognostic index. Gene expression profiles of necrotic and nonnecrotic areas were obtained from the Ivy Glioblastoma Atlas Project (IVY GAP) database to explore the differentially expressed genes.A robust signature of seven genes was identified as a predictor for glioblastoma and low-grade glioma (GBM/LGG) in patients from The Cancer Genome Atlas (TCGA) cohort. This set of genes was able to stratify GBM/LGG and GBM patients into high-risk and low-risk groups in the training set as well as the validation set. The TCGA, Repository for Molecular Brain Neoplasia Data (Rembrandt), and GSE16011 databases were then used to validate the expression level of these seven genes in GBMs and LGGs. Finally, the differentially expressed genes (DEGs) in the high-risk and low-risk groups were subjected to gene ontology enrichment, Kyoto Encyclopedia of Genes and Genomes pathway, and gene set enrichment analyses, and they revealed that these DEGs were associated with immune and inflammatory responses. In conclusion, our study identified a novel seven-gene signature that may guide the prognostic prediction and development of therapeutic applications.


Sign in / Sign up

Export Citation Format

Share Document