scholarly journals A Transient-Enhanced Voltage Regulator with Stability and Power-Supply-Rejection Boosting

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Yue Shi ◽  
Anqi Wang ◽  
Jianwen Cao ◽  
Zekun Zhou

AbstractA high-stability voltage regulator (VR) is proposed in this paper, which integrates transient enhancement and overcurrent protection (OCP). Taken into consideration the performance and area advantages of low-voltage devices, most control parts of proposed VR are supplied by the regulated output voltage, which forms self-power technique (SPT) with power supply rejection (PSR) boosting. Besides, the stability and transient response are enhanced by dynamic load technique (DLT). An embedded overcurrent feedback loop is also adopted to protect the presented VR from damage under overload situations. The proposed VR is implemented in a standard 350 nm BCD technology, whose results indicate the VR can steadily work with 5.5–30 V input voltage, 0–30 mA load range, and 0.1–3.3 μF output capacitor. A 2.98 μV/V line regulation and a 0.233 mV/mA load regulation are achieved with a 40 mA current limiting. The PSR is better than − 64 dB up to 10 MHz with a 0.1 μF output capacitor.

2014 ◽  
Vol 989-994 ◽  
pp. 3236-3239 ◽  
Author(s):  
Yi Tsun Chang ◽  
Yu Da Shiau ◽  
Po Chun Wu ◽  
Ren Hao Xue ◽  
Po Yu Cheng

This study develops a low dropout regulator linear regulator, characterized by a high power supply rejection ratio using ultra-low output resistance buffer and two-stage error amplifiers. The high power supply rejection is based on a closed-loop LDO regulator. The ultra-low output resistance buffer achieves ultra-low output impedance with dual shunt feedback loops, subsequently improving load and line regulations, as well as the transient response for low voltage applications. The proposed LDO regulator linear regulator functions under an input voltage of 1.8~3V, and the output voltage can be maintained at around 1.27V. Moreover, its output voltage is independent of input voltage. The proposed regulator is applicable to light-emitting diode driver integrated circuits. The layout chip area of the LDO linear regulator is 21.5μm × 42.6μm.


2011 ◽  
Vol 20 (01) ◽  
pp. 1-13 ◽  
Author(s):  
CHENCHANG ZHAN ◽  
WING-HUNG KI

A CMOS low quiescent current low dropout regulator (LDR) with high power supply rejection (PSR) and without large output capacitor is proposed for system-on-chip (SoC) power management applications. By cascoding a power NMOS with the PMOS pass transistor, high PSR over a wide frequency range is achieved. The gate-drive of the cascode NMOS is controlled by an auxiliary LDR that draws only 1 μA from a small charge pump, thus helping in reducing the quiescent current. Adaptive biasing is employed for the multi-stage error amplifier of the core LDR to achieve high loop gain hence high PSR at low frequency, low quiescent current at light load and high bandwidth at heavy load. A prototype of the proposed high-PSR LDR is fabricated using a standard 0.35 μm CMOS process, occupying an active area of 0.066 mm2. The lowest supply voltage is 1.6 V and the preset output voltage is 1.2 V. The maximum load current is 10 mA. The measured worst-case PSR at full load without using large output capacitor is -22.7 dB up to 60 MHz. The line and load regulations are 0.25 mV/V and 0.32 mV/mA, respectively.


Author(s):  
Suwarno Suwarno ◽  
Tole Sutikno

<p>This paper presents the implementation of the buck-boost converter design which is a power electronics applications that can stabilize voltage, even though the input voltage changes. Regulator to stabilize the voltage using PWM pulse that triger pin 2 on XL6009. In this design of buck-boost converter is implemented using the XL6009, LM7815 and TIP2955. LM7815 as output voltage regulator at 15V with 1A output current, while TIP2955 is able to overcome output current up to 5A. When the LM7815 and TIP2955 are connected in parallel, the converter can increase the output current to 6A.. Testing is done using varied voltage sources that can be set. The results obtained from this design can be applied to PV (Photovoltaic) and WP (Wind Power), with changes in input voltage between 3-21V dc can produce output voltage 15V.</p>


2016 ◽  
Vol 2016 (HiTEC) ◽  
pp. 000106-000111 ◽  
Author(s):  
R.C. Murphree ◽  
S. Ahmed ◽  
M. Barlow ◽  
A. Rahman ◽  
H.A. Mantooth ◽  
...  

Abstract This paper establishes the first linear regulator in a 1.2 μm CMOS silicon carbide (SiC) process. The linear regulator presented consists of a SiC error amplifier and a pass transistor which has a W/L = 70,000 μm / 1.2 μm. The feedback loop is internal and the frequency compensation network is a combination of internal and external components. As a result of potential process variation in this emerging technology, the voltage reference used at the negative input terminal of the error amplifier has been made external. With an input voltage of 20 V to 30 V, the voltage regulator is able to provide a 15 V output and a continuous load current of 100 mA at temperatures ranging from 25 °C to over 400 °C. At a temperature of 400 °C, testing of the fabricated circuit has shown line regulation of less than 4 mV/V. Under the same test conditions, a load regulation of less than 420 mV/A is achieved.


2014 ◽  
Vol 571-572 ◽  
pp. 950-954
Author(s):  
Zhu Lei Shao

In order to guarantee the stability working of internal circuit of switching power supply, an internal power supply circuit with stabilization output was designed in this paper. Based on the voltage stabilization principle of zener diode, the internal power supply circuit put the high input voltage into 5v output voltage. Because of using module circuit, the circuit structure is simplified effectively. Based on 0.35um BCD technology, the internal power supply circuit was built in PSPICE. According to the experimental result, the internal power supply circuit can output stably in different input voltage and environmental temperature.


2015 ◽  
Vol 740 ◽  
pp. 261-264
Author(s):  
Sheng Zhang ◽  
Pei Zheng Li ◽  
Zhi Wei Chen

As one of the most important parameters of Direct Current (DC) power supply, Load regulation determines the performance of whole system. In this paper, the internal structure as well as performance parameters of LM2577 boosting converter were deeply investigated and based on this investigation we proposed two new methods of improving its Load Regulation. One method (method 1) is to replace the resistor connected to the feedback pin of LM2577 with a programmable potentiometer and sample the variation of output voltage using an AD converter. The potentiometer is adjusted under the control of feedback algorithm to keep the output voltage stable, thus the load regulation enhanced. In the other method (method 2), the feedback pin of LM2577 is connected to an adder to stabilize the output voltage of DC power supply and increase the load regulation. A voltage divider made up of resistors divides the output voltage and provide the divided voltage to one input of the adder. The other adder input comes from DA converter controlled by microcontroller. To reduce the adjust time and increase the efficiency, PID algorithm is applied in the software part of the system. We use 12-bit AD (ADS1115), 12-bit DA (TLV 5638) and 10-bit programmable potentiometer (AD5293) to test the methods above under the condition of 5V input voltage and 600mA load current. When output is set to 7V, the load regulation is improved from 1.043%, the rate from application circuit in LM2577’s Datasheet, to 0.700% and 0.042% by applying the first and second method, respectively. When output voltage equals 12V, the improvement is from 0.658% to 0.008% and 0.008%. Meanwhile, the method 2 suppresses output voltage ripple to be less than 10mV.


Sign in / Sign up

Export Citation Format

Share Document