scholarly journals Single-File Water Flux Through Two-Dimensional Nanoporous Membranes

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Myung Eun Suk

Abstract Recent advances in the development of two-dimensional (2D) materials have facilitated a wide variety of surface chemical characteristics obtained by composing atomic species, pore functionalization, etc. The present study focused on how chemical characteristics such as hydrophilicity affects the water transport rate in hexagonal 2D membranes. The membrane–water interaction strength was tuned to change the hydrophilicity, and the sub-nanometer pore was used to investigate single-file flux, which is known to retain excellent salt rejection. Due to the dewetting behavior of the hydrophobic pore, the water flux was zero or nominal below the threshold interaction strength. Above the threshold interaction strength, water flux decreased with an increase in interaction strength. From the potential of mean force analysis and diffusion coefficient calculations, the proximal region of the pore entrance was found to be the dominant factor degrading water flux at the highly hydrophilic pore. Furthermore, the superiority of 2D membranes over 3D membranes appeared to depend on the interaction strength. The present findings will have implications in the design of 2D membranes to retain a high water filtration rate.

2020 ◽  
Vol 16 ◽  
Author(s):  
Ling Wang ◽  
Zehai Xu ◽  
Delong Fu ◽  
Guoliang Zhang

Background: The development of new emerging nanomaterials for water treatment has attracted more and more interests recently. MXenes is a generic term for a series of new two-dimensional (2D) transition metal carbides and carbonitrides materials which have graphene-like structure. As a new type of 2D lamellar nanomaterial, many researches have focused on the design and synthesis of MXene-based nanomaterials owing to their large number of inter-layer void with the two-dimensional stacking structure, large specific surface area, rich and adjustable surface functional groups and strong hydrophilicity. On account of their unique properties, related discussion and potential of 2D MXenes nanomaterials for membrane separation and water treatment applications are provided. Objective: The goal of this paper is to review new emerging 2D MXenes nanomaterials for the fabrication of various composite membranes and related applications for water treatment. Method: In this review, the design and synthesis of MXene-based composite membranes for water treatment was extensively discussed. Results: Membrane separation technology is an effective approach for solving water pollution problem due to its low energy consumption, environment friendly and easy operation. MXene-based membranes with different molecular sieving behaviors for small organic molecules and ions and corresponding applications in water purification and desalination were discussed. Conclusion: Although composite membranes constructed by 2D MXenes nanomaterials can be prepared to achieve high water flux and satisfactory rejection, most researches focused on the exploration of membrane formation with multi-layered compound or few-layered MXenes. In the near future, the functional properties of the MXene itself should be paid more attention for development of various novel membranes.


Author(s):  
Mehdi Habibollahzadeh ◽  
Juran Noh ◽  
Liang Feng ◽  
Hong-Cai Zhou ◽  
Ahmed Abdel-Wahab ◽  
...  

High water flux and salt selectivity have been the most demanding goals for osmosis-based membranes. Osmotic pressure differences across membranes are particularly important in emerging forward osmosis and pressure retarded...


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
N. I. M. Nawi ◽  
M. R. Bilad ◽  
N. A. H. M. Nordin ◽  
M. O. Mavukkandy ◽  
Z. A. Putra ◽  
...  

Membrane distillation (MD) purifies water by transporting its vapor through a hydrophobic membrane. An ideal MD membrane poses high water flux and high fouling, scaling, and wetting resistances. In this study, we develop polyvinylidene fluoride (PVDF) membranes for MD by focusing on reduction of PVDF degree of crystallinity. We explore the roles of dope solution temperature in dictating the phase separation mechanisms as well as the structure and the performance of semicrystalline PVDF membranes. DSC spectra show that higher dope solution temperature depresses crystallinity via formation of imperfect crystal. Such findings were also supported by FTIR and XRD results. The SEM images reveal formation of spherulite-like morphology in the membrane matrices for membranes prepared from high temperature dope solutions. A good balance between solid-liquid and liquid-liquid phase separations that offers low degree of crystallinity was found at a dope solution temperature of 60°C (PVDF-60), which showed the MD flux of 18 l/m2 h (vs. 6 l/m2 h for temperature of 25°C, as a benchmark) and nearly complete salt rejection when run at hot and cold temperatures of 65°C and 25°C, respectively. The PVDF-60 shows a high wetting resistance and stable MD flux of 10.5 l/m2 h over a 50 h test for treating brine solution as the feed (70 g NaCl/l).


2014 ◽  
Vol 471 ◽  
pp. 27-34 ◽  
Author(s):  
Kun Wang ◽  
Xiaocheng Lin ◽  
Gengping Jiang ◽  
Jefferson Zhe Liu ◽  
Lei Jiang ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Hong Ju ◽  
Jinzhuo Duan ◽  
Haitong Lu ◽  
Weihui Xu

As a new type of membrane material, graphene oxide (GO) can easily form sub-nanometer interlayer channels, which can effectively screen salt ions. The composite membrane and structure with a high water flux and good ion rejection rate were compared by the cross-linking of GO with three different diamine monomers: ethylenediamine (EDA), urea (UR), and p-phenylenediamine (PPD). X-ray photoelectron spectroscopy (XPS) results showed that unmodified GO mainly comprises π-π interactions and hydrogen bonds, but after crosslinking with diamine, both GO and mixed cellulose (MCE) membranes are chemically bonded to the diamine. The GO-UR/MCE membrane achieved a water flux similar to the original GO membrane, while the water flux of GO-PPD/MCE and GO-EDA/MCE dropped. X-ray diffraction results demonstrated that the covalent bond between GO and diamine can effectively inhibit the extension of d-spacing during the transition between dry and wet states. The separation performance of the GO-UR/MCE membrane was the best. GO-PPD/MCE had the largest contact angle and the worst hydrophilicity, but its water flux was still greater than GO-EDA/MCE. This result indicated that the introduction of different functional groups during the diamine monomer cross-linking of GO caused some changes in the performance structure of the membrane.


2021 ◽  
Vol 118 (37) ◽  
pp. e2019891118
Author(s):  
Yang Lu ◽  
Ruoyu Wang ◽  
Yuzhang Zhu ◽  
Zhenyi Wang ◽  
Wangxi Fang ◽  
...  

In this study, we report the emergence of two-dimensional (2D) branching fractal structures (BFS) in the nanoconfinement between the active and the support layer of a thin-film-composite polyamide (TFC-PA) nanofiltration membrane. These BFS are crystal dendrites of NaCl formed when salts are either added to the piperazine solution during the interfacial polymerization process or introduced to the nascently formed TFC-PA membrane before drying. The NaCl dosing concentration and the curing temperature have an impact on the size of the BFS but not on the fractal dimension (∼1.76). The BFS can be removed from the TFC-PA membranes by simply dissolving the crystal dendrites in deionized water, and the resulting TFC-PA membranes have substantially higher water fluxes (three- to fourfold) without compromised solute rejection. The flux enhancement is believed to be attributable to the distributed reduction in physical binding between the PA active layer and the support layer, caused by the exertion of crystallization pressure when the BFS formed. This reduced physical binding leads to an increase in the effective area for water transport, which, in turn, results in higher water flux. The BFS-templating method, which includes the interesting characteristics of 2D crystal dendrites, represents a facile, low-cost, and highly practical method of enhancing the performance of the TFC-PA nanofiltration membrane without having to alter the existing infrastructure of membrane fabrication.


2005 ◽  
Vol 289 (1) ◽  
pp. C33-C41 ◽  
Author(s):  
Warren G. Hill ◽  
Eyad Almasri ◽  
W. Giovanni Ruiz ◽  
Gerard Apodaca ◽  
Mark L. Zeidel

Caveolae are invaginated membrane structures with high levels of cholesterol, sphingomyelin, and caveolin protein that are predicted to exist as liquid-ordered domains with low water permeability. We isolated a caveolae-enriched membrane fraction without detergents from rat lung and characterized its permeability properties to nonelectrolytes and protons. Membrane permeability to water was 2.85 ± 0.41 × 10−3 cm/s, a value 5–10 times higher than expected based on comparisons with other cholesterol and sphingolipid-enriched membranes. Permeabilities to urea, ammonia, and protons were measured and found to be moderately high for urea and ammonia at 8.85 ± 2.40 × 10−7and 6.84 ± 1.03 × 10−2 respectively and high for protons at 8.84 ± 3.06 × 10−2 cm/s. To examine whether caveolin or other integral membrane proteins were responsible for high permeabilities, liposomes designed to mimic the lipids of the inner and outer leaflets of the caveolar membrane were made. Osmotic water permeability to both liposome compositions were determined and a combined inner/outer leaflet water permeability was calculated and found to be close to that of native caveolae at 1.58 ± 1.1 × 10−3 cm/s. In caveolae, activation energy for water flux was high (19.4 kcal/mol) and water permeability was not inhibited by HgCl2; however, aquaporin 1 was detectable by immunoblotting. Immunostaining of rat lung with AQP1 and caveolin antisera revealed very low levels of colocalization. We conclude that aquaporin water channels do not contribute significantly to the observed water flux and that caveolae have relatively high water and solute permeabilities due to the high degree of unsaturation in their fatty acyl chains.


2001 ◽  
Vol 16 (11) ◽  
pp. 1889-1898
Author(s):  
WALTER METZNER

We describe a Wick ordered functional renormalization group method for interacting Fermi systems, where the complete flow from the bare action of the microscopic model to the effective low-energy action is obtained from a differential flow equation. We apply this renormalization group approach to a prototypical two-dimensional lattice electron system, the Hubbard model on a square lattice. The flow equation for the effective interactions is evaluated numerically on 1-loop level. The effective interactions diverge at a finite energy scale which is exponentially small for small bare interactions. To analyze the nature of the instabilities signalled by the diverging interactions we compute the flow of the singlet superconducting susceptibilities for various pairing symmetries and also charge and spin density susceptibilities. Depending on the choice of the model parameters (hopping amplitudes, interaction strength and band-filling) we find antiferromagnetic order or d-wave superconductivity as leading symmetry breaking instability.


2020 ◽  
Vol 8 (15) ◽  
pp. 5211-5221 ◽  
Author(s):  
Jiaqi Zhou ◽  
Mohammad Khazaei ◽  
Ahmad Ranjbar ◽  
Vei Wang ◽  
Thomas D. Kühne ◽  
...  

Two-dimensional transition metal carbides and nitrides (named as MXenes) and their functionalized ones exhibit various physical and chemical characteristics.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 404 ◽  
Author(s):  
Mehrdad Mohammadifakhr ◽  
Joris de Grooth ◽  
Hendrik D. W. Roesink ◽  
Antoine J. B. Kemperman

The use of forward osmosis (FO) for water purification purposes has gained extensive attention in recent years. In this review, we first discuss the advantages, challenges and various applications of FO, as well as the challenges in selecting the proper draw solution for FO, after which we focus on transport limitations in FO processes. Despite recent advances in membrane development for FO, there is still room for improvement of its selective layer and support. For many applications spiral wound membrane will not suffice. Furthermore, a defect-free selective layer is a prerequisite for FO membranes to ensure low solute passage, while a support with low internal concentration polarization is necessary for a high water flux. Due to challenges affiliated to interfacial polymerization (IP) on non-planar geometries, we discuss alternative approaches to IP to form the selective layer. We also explain that, when provided with a defect-free selective layer with good rejection, the membrane support has a dominant influence on the performance of an FO membrane, which can be estimated by the structural parameter (S). We emphasize the necessity of finding a new method to determine S, but also that predominantly the thickness of the support is the major parameter that needs to be optimized.


Sign in / Sign up

Export Citation Format

Share Document