scholarly journals Intercellular transfer of mitochondrial DNA carrying metastasis-enhancing pathogenic mutations from high- to low-metastatic tumor cells and stromal cells via extracellular vesicles

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Keizo Takenaga ◽  
Nobuko Koshikawa ◽  
Hiroki Nagase

Abstract Background Mitochondrial DNA (mtDNA) carrying certain pathogenic mutations or single nucleotide variants (SNVs) enhances the invasion and metastasis of tumor cells, and some of these mutations are homoplasmic in tumor cells and even in tumor tissues. On the other hand, intercellular transfer of mitochondria and cellular components via extracellular vesicles (EVs) and tunneling nanotubes (TNTs) has recently attracted intense attention in terms of cell-to-cell communication in the tumor microenvironment. It remains unclear whether metastasis-enhancing pathogenic mutant mtDNA in tumor cells is intercellularly transferred between tumor cells and stromal cells. In this study, we investigated whether mtDNA with the NADH dehydrogenase subunit 6 (ND6) G13997A pathogenic mutation in highly metastatic cells can be horizontally transferred to low-metastatic cells and stromal cells in the tumor microenvironment. Results When MitoTracker Deep Red-labeled high-metastatic Lewis lung carcinoma A11 cells carrying the ND6 G13997A mtDNA mutation were cocultured with CellLight mitochondria-GFP-labeled low-metastatic P29 cells harboring wild-type mtDNA, bidirectional transfer of red- and green-colored vesicles, probably mitochondria-related EVs, was observed in a time-dependent manner. Similarly, intercellular transfer of mitochondria-related EVs occurred between A11 cells and α-smooth muscle actin (α-SMA)-positive cancer-associated fibroblasts (CAFs, WA-mFib), macrophages (RAW264.7) and cytotoxic T cells (CTLL-2). Intercellular transfer was suppressed by inhibitors of EV release. The large and small EV fractions (L-EV and S-EV, respectively) prepared from the conditioned medium by differential ultracentrifugation both were found to contain mtDNA, although only S-EVs were efficiently incorporated into the cells. Several subpopulations had evidence of LC3-II and contained degenerated mitochondrial components in the S-EV fraction, signaling to the existence of autophagy-related S-EVs. Interestingly, the S-EV fraction contained a MitoTracker-positive subpopulation, which was inhibited by the respiration inhibitor antimycin A, indicating the presence of mitochondria with membrane potential. It was also demonstrated that mtDNA was transferred into mtDNA-less ρ0 cells after coculture with the S-EV fraction. In syngeneic mouse subcutaneous tumors formed by a mixture of A11 and P29 cells, the mitochondria-related EVs released from A11 cells reached distantly positioned P29 cells and CAFs. Conclusions These results suggest that metastasis-enhancing pathogenic mtDNA derived from metastatic tumor cells is transferred to low-metastatic tumor cells and stromal cells via S-EVs in vitro and in the tumor microenvironment, inferring a novel mechanism of enhancement of metastatic potential during tumor progression.

2021 ◽  
Author(s):  
Bhaskar Basu ◽  
Subhajit Karmakar

Extracellular vesicles (EVs) are cell-derived lipid membrane bound vesicles that serve as mediators of intercellular communication. EVs have been found to regulate a wide range of cellular processes through the transference of genetic, protein and lipid messages from the host cell to the recipient cell. Unsurprisingly, this major mode of intracellular communication would be abrogated in cancer. Ever increasing evidence points towards a key role of EVs in promoting tumor development and in contributing to the various stages of metastasis. Tumor released EVs have been shown to facilitate the transference of oncogenic proteins and nucleic acids to other tumor cells and to the surrounding stromal cells, thereby setting up a tumor permissive microenvironment. EVs released from tumor cells have been shown to promote extracellular matrix (ECM) remodeling through the modulation of neighboring tumor cells and stromal cells. EVs released from disseminated tumor cells have been reported to attract circulating tumor cells (CTCs) via chemotaxis and induce the production of specific extracellular matrix components from neighboring stromal cells so as to support the growth of metastatic cells at the secondary tumor site. Circulating levels of tumor derived EVs of patients have been correlated with incidence of metastasis and disease relapse.


2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Chunliang Shang ◽  
Jie Qiao ◽  
Hongyan Guo

AbstractThe pre-metastatic niche is a favorable microenvironment for the colonization of metastatic tumor cells in specific distant organs. Lipid droplets (LDs, also known as lipid bodies or adiposomes) have increasingly been recognized as lipid-rich, functionally dynamic organelles within tumor cells, immune cells, and other stromal cells that are linked to diverse biological functions and human diseases. Moreover, in recent years, several studies have described the indispensable role of LDs in the development of pre-metastatic niches. This review discusses current evidence related to the biogenesis, composition, and functions of LDs related to the following characteristics of the pre-metastatic niche: immunosuppression, inflammation, angiogenesis/vascular permeability, lymphangiogenesis, organotropism, reprogramming. We also address the function of LDs in mediating pre-metastatic niche formation. The potential of LDs as markers and targets for novel antimetastatic therapies will be discussed.


2019 ◽  
Vol 20 (11) ◽  
pp. 2608 ◽  
Author(s):  
Sara Rocha ◽  
Sara Pinto Teles ◽  
Mafalda Azevedo ◽  
Patrícia Oliveira ◽  
Joana Carvalho ◽  
...  

Extracellular vesicles (EVs) secreted by tumor cells modulate recipient cells’ behavior, but their effects in normal cells from the tumor microenvironment remain poorly known. In this study, we dissected the functional impact of gastric cancer cell-derived EVs (GC-EVs), representative of distinct GC histotypes, on the behavior of normal isogenic epithelial and mesenchymal cells. GC-EVs were isolated by differential centrifugation and characterized by transmission electron microscopy, nanoparticle tracking analysis, and imaging flow-cytometry. Epithelial and mesenchymal cells were challenged with GC-EVs and submitted to proliferation, migration, and invasion assays. Expression of epithelial and mesenchymal markers was followed by immunofluorescence and flow-cytometry. Our results indicated that GC-EVs secreted by diffuse-type cancer cells decrease the migration of recipient cells. This effect was more prominent and persistent for mesenchymal recipient cells, which also increased Fibronectin expression in response to EVs. GC-EVs secreted by cancer cells derived from tumors with an intestinal component increased invasion of recipient epithelial cells, without changes in EMT markers. In summary, this study demonstrated that GC-EVs modulate the migration and invasion of epithelial and mesenchymal cells from the tumor microenvironment, in a histotype-dependent manner, highlighting new features of intestinal and diffuse-type GC cells, which may help explaining differential metastasis patterns and aggressiveness of GC histotypes.


RSC Advances ◽  
2015 ◽  
Vol 5 (57) ◽  
pp. 46218-46228 ◽  
Author(s):  
Victor Pan ◽  
Preethi N. Siva ◽  
Christa L. Modery-Pawlowski ◽  
Ujjal Didar Singh Sekhon ◽  
Anirban Sen Gupta

Pro-metastatic tumor cells in circulation interact with active platelets that mediate various mechanisms of hematologic metastasis. Elucidating and utilizing these interactions on delivery vehicles can provide unique ways of metastasis-targeted drug delivery.


2020 ◽  
Vol 21 (17) ◽  
pp. 6024
Author(s):  
Lyna Kara-Terki ◽  
Lucas Treps ◽  
Christophe Blanquart ◽  
Delphine Fradin

Extracellular vesicles (EVs), such as exosomes, are critical mediators of intercellular communication between tumor cells and other cells located in the microenvironment but also in more distant sites. Exosomes are small EVs that can carry a variety of molecules, such as lipids, proteins, and non-coding RNA, especially microRNAs (miRNAs). In thoracic cancers, including lung cancers and malignant pleural mesothelioma, EVs contribute to the immune-suppressive tumor microenvironment and to tumor growth and metastasis. In this review, we discuss the recent understanding of how exosomes behave in thoracic cancers and how and why they are promising liquid biomarkers for diagnosis, prognosis, and therapy, with a special focus on exosomal miRNAs.


Cells ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 93 ◽  
Author(s):  
James Jabalee ◽  
Rebecca Towle ◽  
Cathie Garnis

Extracellular vesicles (EVs) are a heterogeneous collection of membrane-bound structures that play key roles in intercellular communication. EVs are potent regulators of tumorigenesis and function largely via the shuttling of cargo molecules (RNA, DNA, protein, etc.) among cancer cells and the cells of the tumor stroma. EV-based crosstalk can promote proliferation, shape the tumor microenvironment, enhance metastasis, and allow tumor cells to evade immune destruction. In many cases these functions have been linked to the presence of specific cargo molecules. Herein we will review various types of EV cargo molecule and their functional impacts in the context of oncology.


2019 ◽  
Author(s):  
Miki Nakamura ◽  
Atsushi Suetsugu ◽  
Kana Matsuura ◽  
Tomoyuki Satake ◽  
Masahito Shimizu ◽  
...  

2019 ◽  
Author(s):  
Martin Wolf ◽  
Balazs Vari ◽  
Constantin Blöchl ◽  
Anna M Raninger ◽  
Rodolphe Poupardin ◽  
...  

ABSTRACTAllogeneic regenerative cell therapy has shown surprising results despite lack of engraftment of the transplanted cells. Their efficacy was so far considered to be mostly due to secreted trophic factors. We hypothesized that extracellular vesicles (EVs) can also contribute to their mode of action. Here we provide evidence that EVs derived from therapeutic placental-expanded (PLX) stromal cells are potent inducers of angiogenesis and modulate immune cell proliferation in a dose-dependent manner.Crude EVs were enriched >100-fold from large volume PLX conditioned media via tangential flow filtration (TFF) as determined by tunable resistive pulse sensing (TRPS). Additional TFF purification was devised to separate EVs from cell-secreted soluble factors. EV identity was confirmed by western blot, calcein-based flow cytometry and electron microscopy. Surface marker profiling of tetraspanin-positive EVs identified expression of cell-and matrix-interacting adhesion molecules. Differential tandem mass tag proteomics comparing PLX-EVs to PLX-derived soluble factors revealed significant differential enrichment of 258 proteins in purified PLX-EVs involved in angiogenesis, cell movement and immune system signaling. At the functional level, PLX-EVs and cells inhibited T cell mitogenesis. PLX-EVs and soluble factors displayed dose-dependent proangiogenic potential by enhancing tube-like structure formation in vitro.Our findings indicate that the mode of PLX action involves an EV-mediated proangiogenic function and immune response modulation that may help explaining clinical efficacy beyond presence of the transplanted allogeneic cells.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Luciana Nogueira de Sousa Andrade ◽  
Andréia Hanada Otake ◽  
Silvia Guedes Braga Cardim ◽  
Felipe Ilelis da Silva ◽  
Mariana Mari Ikoma Sakamoto ◽  
...  

Abstract Extracellular vesicles (EVs) are emerging as key players in intercellular communication. EVs can transfer biological macromolecules to recipient cells, modulating various physiological and pathological processes. It has been shown that tumor cells secrete large amounts of EVs that can be taken up by malignant and stromal cells, dictating tumor progression. In this study, we investigated whether EVs secreted by melanoma cells in response to chemotherapy modulate tumor response to alkylating drugs. Our findings showed that human and murine melanoma cells secrete more EVs after treatment with temozolomide and cisplatin. We observed that EVs shed by melanoma cells after temozolomide treatment modify macrophage phenotype by skewing macrophage activation towards the M2 phenotype through upregulation of M2-marker genes. Moreover, these EVs were able to favor melanoma re-growth in vivo, which was accompanied by an increase in Arginase 1 and IL10 gene expression levels by stromal cells and an increase in genes related to DNA repair, cell survival and stemness in tumor cells. Taken together, this study suggests that EVs shed by tumor cells in response to chemotherapy promote tumor repopulation and treatment failure through cellular reprogramming in melanoma cells.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Anastasia Cheng ◽  
Dongsic Choi ◽  
Maximilien Lora ◽  
Dominique Shum-Tim ◽  
Janusz Rak ◽  
...  

Abstract Background The paracrine effects of multipotent mesenchymal stromal cells (MSCs) are mediated by their secretome composed by soluble factors (i.e., cytokines, growth factors, hormones) and extracellular vesicles (EVs). EVs promote intercellular communication, and the EV cargoes [e.g., proteins, soluble factors, microRNAs (miRNAs), messenger RNA (mRNA), DNA] reflect the molecular and functional characteristics of their parental cells. MSC-derived EVs (MSC-EVs) are currently evaluated as subcellular therapeutics. A key function of the MSC secretome is its ability to promote immune tolerance (i.e., immunopotency), a property that is enhanced by priming approaches (e.g., cytokines, hypoxia, chemicals) and inversely correlates with the age of the MSC donors. We evaluated mechanisms underlying MSC vesiculation and the effects of inflammation and aging on this process. Methods We evaluated the effects of interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) on human adipose-derived MSC: (a) vesiculation (custom RT2 Profiler PCR Array), (b) EV profiles (Nanoparticle Tracking Analysis and Nanoparticle Flow Cytometry), (c) EV cargo (proteomic analysis and Western blot analysis), and (d) immunopotency (standard MSC:CD4 T cell proliferation inhibition assay). We confirmed the role of RAB27B on MSC vesiculation (RAB27B siRNA) and assessed its differential contribution to vesiculation in adult and pediatric MSCs (qPCR). Results Cytokine priming upregulated RAB27B in adipose-derived MSCs increasing their secretion of exosome-like small EVs (sEVs; < 200 nm) containing two key mediators of immunopotency: A20 and TSG-6. These EVs inhibited T cell proliferation in a dose-dependent manner. RAB27B siRNA inhibited MSC vesiculation. Adipose-derived MSCs isolated from pediatric donors exhibited higher RAB27B expression and secreted more sEVs than adult MSCs. Conclusions Cytokine priming is a useful strategy to harvest anti-inflammatory MSC-sEVs for clinical applications. Of relevance, donor age should be considered in the selection of MSC-sEVs for clinical applications.


Sign in / Sign up

Export Citation Format

Share Document