scholarly journals MicroRNAs and their regulatory networks in Chinese Gushi chicken abdominal adipose tissue during postnatal late development

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Yi Chen ◽  
Yinli Zhao ◽  
Wenjiao Jin ◽  
Yuanfang Li ◽  
Yanhua Zhang ◽  
...  

Abstract Background Abdominal fat is the major adipose tissue in chickens. The growth status of abdominal fat during postnatal late development ultimately affects meat yield and quality in chickens. MicroRNAs (miRNAs) are endogenous small noncoding RNAs that regulate gene expression at the post-transcriptional level. Studies have shown that miRNAs play an important role in the biological processes involved in adipose tissue development. However, few studies have investigated miRNA expression profiles and their interaction networks associated with the postnatal late development of abdominal adipose tissue in chickens. Results We constructed four small RNA libraries from abdominal adipose tissue obtained from Chinese domestic Gushi chickens at 6, 14, 22, and 30 weeks. A total of 507 known miRNAs and 53 novel miRNAs were identified based on the four small RNA libraries. Fifty-one significant differentially expressed (SDE) miRNAs were identified from six combinations by comparative analysis, and the expression patterns of these SDE miRNAs were divided into six subclusters by cluster analysis. Gene ontology enrichment analysis showed that the SDE miRNAs were primarily involved in the regulation of fat cell differentiation, regulation of lipid metabolism, regulation of fatty acid metabolism, and unsaturated fatty acid metabolism in the lipid metabolism- or deposition-related biological process categories. In addition, we constructed differentially expressed miRNA–mRNA interaction networks related to abdominal adipose development. The results showed that miRNA families, such as mir-30, mir-34, mir-199, mir-8, and mir-146, may have key roles in lipid metabolism, adipocyte proliferation and differentiation, and cell junctions during abdominal adipose tissue development in chickens. Conclusions This study determined the dynamic miRNA transcriptome and characterized the miRNA–mRNA interaction networks in Gushi chicken abdominal adipose tissue for the first time. The results expanded the number of known miRNAs in abdominal adipose tissue and provide novel insights and a valuable resource to elucidate post-transcriptional regulation mechanisms during postnatal late development of abdominal adipose tissue in chicken.

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249288
Author(s):  
Wenjiao Jin ◽  
Yinli Zhao ◽  
Bin Zhai ◽  
Yuanfang Li ◽  
Shengxin Fan ◽  
...  

Circular RNAs (circRNAs) play important roles in adipogenesis. However, studies on circRNA expression profiles associated with the development of abdominal adipose tissue are lacking in chickens. In this study, 12 cDNA libraries were constructed from the abdominal adipose tissue of Chinese domestic Gushi chickens at 6, 14, 22, and 30 weeks. A total of 1,766 circRNAs were identified by Illumina HiSeq 2500 sequencing. These circRNAs were primarily distributed on chr1 through chr10 and sex chromosomes, and 84.95% of the circRNAs were from gene exons. Bioinformatic analysis showed that each circRNA has 35 miRNA binding sites on average, and 62.71% have internal ribosome entry site (IRES) elements. Meanwhile, these circRNAs were primarily concentrated in TPM < 0.1 and TPM > 60, and their numbers accounted for 18.90% and 80.51%, respectively, exhibiting specific expression patterns in chicken abdominal adipose tissue. In addition, 275 differentially expressed (DE) circRNAs were identified by comparison analysis. Functional enrichment analysis showed that the parental genes of DE circRNAs were primarily involved in biological processes and pathways related to lipid metabolism, such as regulation of fat cell differentiation, fatty acid homeostasis, and triglyceride homeostasis, as well as fatty acid biosynthesis, fatty acid metabolism, and glycerolipid metabolism. Furthermore, ceRNA regulatory networks related to abdominal adipose development were constructed. The results of this study indicated that circRNAs can regulate lipid metabolism, adipocyte proliferation and differentiation, and cell junctions during abdominal adipose tissue development in chickens through complex ceRNA networks between circRNAs, miRNAs, genes, and pathways. The results of this study may help to expand the number of known circRNAs in abdominal adipose tissue and provide a valuable resource for further research on the function of circRNAs in chicken abdominal adipose tissue.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Meng Zhang ◽  
Fang Li ◽  
Xiang-fei Ma ◽  
Wen-ting Li ◽  
Rui-rui Jiang ◽  
...  

Abstract Background The distribution and deposition of fat tissue in different parts of the body are the key factors affecting the carcass quality and meat flavour of chickens. Intramuscular fat (IMF) content is an important factor associated with meat quality, while abdominal fat (AbF) is regarded as one of the main factors affecting poultry slaughter efficiency. To investigate the differentially expressed genes (DEGs) and molecular regulatory mechanisms related to adipogenic differentiation between IMF- and AbF-derived preadipocytes, we analysed the mRNA expression profiles in preadipocytes (0d, Pre-) and adipocytes (10d, Ad-) from IMF and AbF of Gushi chickens. Results AbF-derived preadipocytes exhibited a higher adipogenic differentiation ability (96.4% + 0.6) than IMF-derived preadipocytes (86.0% + 0.4) (p < 0.01). By Ribo-Zero RNA sequencing, we obtained 4403 (2055 upregulated and 2348 downregulated) and 4693 (2797 upregulated and 1896 downregulated) DEGs between preadipocytes and adipocytes in the IMF and Ad groups, respectively. For IMF-derived preadipocyte differentiation, pathways related to the PPAR signalling pathway, ECM-receptor interaction and focal adhesion pathway were significantly enriched. For AbF-derived preadipocyte differentiation, the steroid biosynthesis pathways, calcium signaling pathway and ECM-receptor interaction pathway were significantly enriched. A large number of DEGs related to lipid metabolism, fatty acid metabolism and preadipocyte differentiation, such as PPARG, ACSBG2, FABP4, FASN, APOA1 and INSIG1, were identified in our study. Conclusion This study revealed large transcriptomic differences between IMF- and AbF-derived preadipocyte differentiation. A large number of DEGs and transcription factors that were closely related to fatty acid metabolism, lipid metabolism and preadipocyte differentiation were identified in the present study. Additionally, the microenvironment of IMF- and AbF-derived preadipocyte may play a significant role in adipogenic differentiation. This study provides valuable evidence to understand the molecular mechanisms underlying adipogenesis and fat deposition in chickens.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 559
Author(s):  
He Zhang ◽  
Erdu Ren ◽  
Rongying Xu ◽  
Yong Su

Butyrate has a central function in the regulation of energy metabolism as a metabolite of bacterial fermentation. This study evaluated the effects of intravenous sodium butyrate (SB) administration on the transcriptome of muscle and adipose tissue of pigs. Twelve crossbred barrows (Duroc × Landrace × Large White) were fitted with a medical polyethylene cannula via the internal jugular vein and were daily infused with 10 mL SB (200 mmol/L) or the same volume of physiological saline. Muscle transcriptome showed 11 DEGs related to carbohydrate metabolism, 28 DEGs related to lipid metabolism, and 10 DEGs related to amino acid metabolism. Among these, carbohydrate catabolic process-related genes (PPP1R3B, PRPS2, ALDOC), fatty acid synthase (FASN), and lipolysis-related genes (PLIN1) were upregulated, while the carbohydrate biosynthetic process-related genes (PCK1) and most amino acid metabolism-related genes were downregulated. Adipose transcriptome showed 12 DEGs related to carbohydrate metabolism, 27 DEGs related to lipid metabolism, and 10 DEGs related to amino acid metabolism. Among these, carbohydrate metabolism-related genes (IGF1, LEP, SLC2A4) and lipolysis-related genes (LPL) were upregulated, while lipolysis-related genes (ANGPTL4) and most amino acid metabolism-related genes were downregulated. The results suggest that short-term intravenous SB infusion could modulate the muscle and adipose tissue metabolism at the transcriptional level by decreasing amino acid metabolism pathways. Additionally, intravenous SB increased the glucose catabolism in muscle tissue and decreased the glucose utilization in adipose tissue. Intravenous SB increased the fatty acid synthesis, decreased the lipolysis in muscle tissue, and increased the lipolysis in adipose tissue. This suggests that systemic butyrate may display discriminative metabolic regulation in different tissues of barrows.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245858
Author(s):  
Lourdes Criado-Mesas ◽  
Maria Ballester ◽  
Daniel Crespo-Piazuelo ◽  
Magí Passols ◽  
Anna Castelló ◽  
...  

mir-33a and mir-33b are co-transcribed with the SREBF2 and SREBF1 transcription factors, respectively. The main role of SREBF1 is the regulation of genes involved in fatty acid metabolism, while SREBF2 regulates genes participating in cholesterol biosynthesis and uptake. Our objective was to study the expression of both miR-33a and miR-33b, together with their host SREBF genes, in liver, adipose tissue and muscle to better understand the role of miR-33a/b in the lipid metabolism of pigs. In our study, the expression of miR-33a, miR-33b and SREBF2 in liver, adipose tissue, and muscle was studied in 42 BC1_LD (25% Iberian x 75% Landrace backcross) pigs by RT-qPCR. In addition, the expression of in-silico predicted target genes and fatty acid composition traits were correlated with the miR-33a/b expression. We observed different tissue expression patterns for both miRNAs. In adipose tissue and muscle a high correlation between miR-33a and miR-33b expression was found, whereas a lower correlation was observed in liver. The expression analysis of in-silico predicted target-lipid related genes showed negative correlations between miR-33b and CPT1A expression in liver. Conversely, positive correlations between miR-33a and PPARGC1A and USF1 gene expression in liver were observed. Lastly, positive and negative correlations between miR-33a/b expression and saturated fatty acid (SFA) and polyunsaturated fatty acid (PUFA) content, respectively, were identified. Overall, our results suggested that both miRNAs are differentially regulated and have distinct functions in liver, in contrast to muscle and adipose tissue. Furthermore, the correlations between miR-33a/b expression both with the expression of in-silico predicted target-lipid related genes and with fatty acid composition, opens new avenues to explore the role of miR33a/b in the regulation of lipid metabolism.


1961 ◽  
Vol 200 (4) ◽  
pp. 847-850 ◽  
Author(s):  
Judith K. Patkin ◽  
E. J. Masoro

Cold acclimation is known to alter hepatic lipid metabolism. Liver slices from cold-acclimated rats have a greatly depressed capacity to synthesize long-chain fatty acids from acctate-1-C14. Since adipose tissue is the major site of lipogenic activity in the intact animal, its fatty acid synthetic capacity was studied. In contrast to the liver, it was found that adipose tissue from the cold-acclimated rat synthesized three to six times as much long-chain fatty acids per milligram of tissue protein as the adipose tissue from the control rat living at 25°C. Evidence is presented indicating that adipose tissue from cold-acclimated and control rats esterify long-chain fatty acids at the same rate. The ability of adipose tissue to oxidize palmitic acid to CO2 was found to be unaltered by cold acclimation. The fate of the large amount of fatty acid synthesized in the adipose tissue of cold-acclimated rats is discussed.


2009 ◽  
Vol 34 (3) ◽  
pp. 315-322 ◽  
Author(s):  
Gregory R. Steinberg

During moderate-intensity exercise, fatty acids are the predominant substrate for working skeletal muscle. The release of fatty acids from adipose tissue stores, combined with the ability of skeletal muscle to actively fine tune the gradient between fatty acid and carbohydrate metabolism, depending on substrate availability and energetic demands, requires a coordinated system of metabolic control. Over the past decade, since the discovery that AMP-activated protein kinase (AMPK) was increased in accordance with exercise intensity, there has been significant interest in the proposed role of this ancient stress-sensing kinase as a critical integrative switch controlling metabolic responses during exercise. In this review, studies examining the role of AMPK as a regulator of fatty acid metabolism in both adipose tissue and skeletal muscle during exercise will be discussed. Exercise induces activation of AMPK in adipocytes and regulates triglyceride hydrolysis and esterfication through phosphorylation of hormone sensitive lipase (HSL) and glycerol-3-phosphate acyl-transferase, respectively. In skeletal muscle, exercise-induced activation of AMPK is associated with increases in fatty acid uptake, phosphorylation of HSL, and increased fatty acid oxidation, which is thought to occur via the acetyl-CoA carboxylase-malony-CoA-CPT-1 signalling axis. Despite the importance of AMPK in regulating fatty acid metabolism under resting conditions, recent evidence from transgenic models of AMPK deficiency suggest that alternative signalling pathways may also be important for the control of fatty acid metabolism during exercise.


2008 ◽  
Vol 295 (6) ◽  
pp. E1358-E1368 ◽  
Author(s):  
Cynthia F. Zizola ◽  
Gary J. Schwartz ◽  
Silke Vogel

Cellular retinol-binding protein (CRBP) type III (CRBP-III) belongs to the family of intracellular lipid-binding proteins, which includes the adipocyte-binding protein aP2. In the cytosol, CRBP-III binds retinol, the precursor of retinyl ester and the active metabolite retinoic acid. The goal of the present work is to understand the regulation of CRBP-III expression and its role in lipid metabolism. Using EMSAs, luciferase reporter assays, and chromatin immunoprecipitation assays, we found that CRBP-III is a direct target of peroxisome proliferator-activated receptor-γ (PPARγ). Moreover, CRBP-III expression was induced in adipose tissue of mice after treatment with the PPARγ agonist rosiglitazone. To examine a potential role of CRBP-III in regulating lipid metabolism in vivo, CRBP-III-deficient (C-III-KO) mice were maintained on a high-fat diet (HFD). Hepatic steatosis was decreased in HFD-fed C-III-KO compared with HFD-fed wild-type mice. These differences were partly explained by decreased serum free fatty acid levels and decreased free fatty acid efflux from adipose tissue of C-III-KO mice. In addition, the lack of CRBP-III was associated with reduced food intake, increased respiratory energy ratio, and altered body composition, with decreased adiposity and increased lean body mass. Furthermore, expression of genes involved in mitochondrial fatty acid oxidation in brown adipose tissue was increased in C-III-KO mice, and C-III-KO mice were more cold tolerant than wild-type mice fed an HFD. In summary, we demonstrate that CRBP-III is a PPARγ target gene and plays a role in lipid and whole body energy metabolism.


Sign in / Sign up

Export Citation Format

Share Document