scholarly journals Linking exogenous foliar application of glycine betaine and stomatal characteristics with salinity stress tolerance in cotton (Gossypium hirsutum L.) seedlings

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Abdoul Kader Mounkaila Hamani ◽  
Shuang Li ◽  
Jinsai Chen ◽  
Abubakar Sunusi Amin ◽  
Guangshuai Wang ◽  
...  

Abstract Background Glycine betaine (GB) plays a crucial role in plants responding to abiotic stresses. Studying the physiological response of cotton seedlings to exogenous GB under salt stress provides a reference for the application of GB to improve the resistance of cotton seedlings under salt stress. The purpose of this research is to examine the impacts of foliar-applied GB on leaf stomatal structure and characteristics, gas exchange and chlorophyll fluorescence characteristics and plant growth indicators of Gossypium hirsutum L. under NaCl stress conditions. Results Under the salinity of 150 mM, the four concentrations of GB are 0, 2.5, 5, and 7.5 mM, and the control (CK) was GB-untreated non-saline. Salt stress negatively affected leaf stomata as well as gas exchange and chlorophyll fluorescence and decreased plant growth parameters of cotton seedlings. The treatment with 5 mM GB significantly increased the evolution of photosynthetic rate (Pn), transpiration rate (Tr), intracellular CO2 concentration (Ci) and stomatal conductance (gs) compared to the GB-untreated saline treatment. The Exogenous foliar-applied GB has sustainably decreased the carboxylation efficiency (Pn/Ci) and water use efficiency (WUE). The concentration of 5 mM GB leads to a significant improvement of leaf stomatal characteristics. The leaf gas exchange attributes correlated positively with stomatal density (SD), stomatal length (SL) and stomatal with (SW). Conclusion The overall results suggested that exogenous foliar supplementation with GB can effectively alleviate the damage of salt stress to cotton seedlings. The effect of applying 5 mM GB could be an optional choice for protecting cotton seedlings from NaCl stress through promoting the stomatal functions, photosynthetic activities and growth characteristics.

2018 ◽  
Vol 70 (3) ◽  
pp. 413-423 ◽  
Author(s):  
Mohamed Farissi ◽  
Mohammed Mouradi ◽  
Omar Farssi ◽  
Abdelaziz Bouizgaren ◽  
Cherki Ghoulam

Salinity is one of the most serious agricultural problems that adversely affects growth and productivity of pasture crops such as alfalfa. In this study, the effects of salinity on some ecophysiological and biochemical criteria associated with salt tolerance were assessed in two Moroccan alfalfa (Medicago sativa L.) populations, Taf 1 and Tata. The experiment was conducted in a hydro-aeroponic system containing nutrient solutions, with the addition of NaCl at concentrations of 100 and 200 mM. The salt stress was applied for a month. Several traits in relation to salt tolerance, such as plant dry biomass, relative water content, leaf gas exchange, chlorophyll fluorescence, nutrient uptake, lipid peroxidation and antioxidant enzymes, were analyzed at the end of the experiment. The membrane potential was measured in root cortex cells of plants grown with or without NaCl treatment during a week. The results indicated that under salt stress, plant growth and all of the studied physiological and biochemical traits were significantly decreased, except for malondialdehyde and H2O2 contents, which were found to be increased under salt stress. Depolarization of membrane root cortex cells with the increase in external NaCl concentration was noted, irrespective of the growth conditions. The Tata population was more tolerant to high salinity (200 mM NaCl) and its tolerance was associated with the ability of plants to maintain adequate levels of the studied parameters and their ability to overcome oxidative stress by the induction of antioxidant enzymes, such as guaiacol peroxidase, catalase and superoxide dismutase.


2018 ◽  
Vol 19 (11) ◽  
pp. 3310 ◽  
Author(s):  
Mohamed El-Esawi ◽  
Ibrahim Alaraidh ◽  
Abdulaziz Alsahli ◽  
Saud Alzahrani ◽  
Hayssam Ali ◽  
...  

High salinity mitigates crop productivity and quality. Plant growth-promoting soil rhizobacteria (PGPR) improve plant growth and abiotic stress tolerance via mediating various physiological and molecular mechanisms. This study investigated the effects of the PGPR strain Serratia liquefaciens KM4 on the growth and physiological and molecular responsiveness of maize (Zea mays L.) plants under salinity stress (0, 80, and 160 mM NaCl). High salinity significantly reduced plant growth and biomass production, nutrient uptake, leaf relative water content, pigment content, leaf gas exchange attributes, and total flavonoid and phenolic contents in maize. However, osmolyte content (e.g., soluble proteins, proline, and free amino acids), oxidative stress markers, and enzymatic and non-enzymatic antioxidants levels were increased in maize under high salinity. On the other hand, Serratia liquefaciens KM4 inoculation significantly reduced oxidative stress markers, but increased the maize growth and biomass production along with better leaf gas exchange, osmoregulation, antioxidant defense systems, and nutrient uptake under salt stress. Moreover, it was found that all these improvements were accompanied with the upregulation of stress-related genes (APX, CAT, SOD, RBCS, RBCL, H+-PPase, HKT1, and NHX1), and downregulation of the key gene in ABA biosynthesis (NCED). Taken together, the results demonstrate the beneficial role of Serratia liquefaciens KM4 in improving plant growth and salt stress tolerance in maize by regulating ion homeostasis, redox potential, leaf gas exchange, and stress-related genes expression.


2019 ◽  
Author(s):  
Ruihong Wang ◽  
Han Jiang ◽  
Ziyun Zhou ◽  
Hongbo Guo ◽  
Juane Dong

Abstract Background: Our previous study found that male sterility in Salvia miltiorrhiza could result in stunted growth, reduced biomass, decreased primary metabolism, and increased secondary metabolism, but their molecular mechanisms have not yet been revealed. In this article, we investigated the underlying mechanism of male sterility to plant growth and metabolic yield by using physiological analysis and mRNA sequencing (RNA-Seq). Results: In this study, transcriptomic and physiological analysis were performed to identify the mechanism of male sterile mutants to plant growth and metabolic yield. Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, it was found that the pathways were mainly enriched in processes including organ development, primary metabolic process and secondary metabolic process. Physiological analysis showed that the chloroplast structure of male sterile mutants of S. miltiorrhiza was abnormally developed, which could result in decrease in leaf gas exchange (A, E and gs), chlorophyll fluorescence (Fv, Fm and Fv/Fm), and the chlorophyll content. Among the differentially expressed genes (DEGs), the expression levels of 7 genes involved to photosynthesis-related pathway were down-regulated in male sterile lines of S. miltiorrhiza, which was consistent with the corresponding phenotypic changes in chlorophyll fluorescence, chlorophyll content and leaf gas exchange. Transcriptomic analysis established the role of disproportionating enzyme 1 (DPE1) as catalyzing the degradation of starch, and the role sucrose synthase 3 (SUS3) and cytosolic invertase 2 (CINV2) as catalyzing the degradation of sucrose in the S. miltiorrhiza mutants. The results also confirmed that phenylalanine ammonialyase (PAL) was involved in the biosynthesis of rosmarinic acid and salvianolic acid B, and flavone synthase (FLS) was an important enzyme catalyzing steps of flavonoid biosynthesis. Conclusions: Our results from the physiological and transcriptome analysis reveal underlying mechanism of plant growth and metabolic yield in male sterile mutants, and provide insight into the crop yield of S. miltiorrhiza.


1998 ◽  
Vol 123 (4) ◽  
pp. 714-718 ◽  
Author(s):  
Thomas E. Marler ◽  
Michael V. Mickelbart

The influence of drought stress on leaf gas exchange and chlorophyll fluorescence characteristics of field-grown papaya (Carica papaya L.) plants was determined under a range of incident light fluxes and times of day. These data may aid in improving management systems for papaya production which minimize detrimental effects from suboptimal environmental conditions. Water was withheld from field-grown `Red Lady' plants in one study and `Tainung #2', `Red Lady', and `Sunrise' plants in a second study until soil matric potential was -60 to -70 kPa. Drought-stressed plants exhibited reduced net CO2 assimilation (ACO2) above light saturation, photosynthetic photon flux (PPF) at which light saturation for ACO2 occurred, and apparent quantum yield compared to well-watered plants. The light compensation point of drought-stressed plants was greater than that of well-watered plants. Leaf chlorophyll fluorescence characteristics were not influenced by drought stress. The daily pattern of leaf gas exchange was dependent on climatic conditions. For sunny days, ACO2, stomatal conductance of water (gs), and water use efficiency of well-watered plants were maximal at mid-morning, declined during midday, and then partially recovered during late afternoon. In drought-stressed plants, leaf gas exchange was relatively constant after a brief early morning maximum. On overcast days, the responses of gas exchange variables in relation to time of day followed smooth bell-shaped patterns regardless of the level of drought stress. Combined with previously published data, these results indicate that the influence of drought stress on gas exchange is highly dependent on time of day, ambient sky conditions, plant size, and speed with which drought stress occurs.


Author(s):  
Welson L. Simões ◽  
Anderson R. de Oliveira ◽  
Jucicléia S. da Silva ◽  
Vinicius G. Torres Junior ◽  
Weslley O. da Silva ◽  
...  

ABSTRACT Salinity is one of the factors that most limit agricultural yield in the Brazilian semi-arid region. In this context, the present study aimed to evaluate the leaf gas exchange and biometric characteristics of accessions of the Saccharum complex subjected to salt stress. The experiment was carried out in a greenhouse, installed at Embrapa Semiárido, in Petrolina, PE, Brazil. The experimental design was in randomized blocks, with the treatments represented by 19 accessions belonging to different genera/species, being 10 accessions of Saccharum officinarum (BGCN 6, BGCN 91, BGCN 104, BGCN 127, BCGN 90, BGCN 101, BGCN 102, BGCN 118, BGCN 125 and BGCN 122), two accessions of Saccharum spp. (BGCN 87 and BGCN 89), one accession of Saccharum hybridum (BGCN 88), one accession of Saccharum robustum (BGCN 94), four accessions of Erianthus arundinaceus (BGCN 117, BGCN 119, BGCN 120 and BGCN 123) and one accession of Miscanthus spp., with three repetitions. Biometric characteristics, chlorophyll index and leaf gas exchange of the accessions were evaluated when they were subjected to irrigation with salinized water (6.0 dS m-1). E. arundinaceus accessions (BGCN 120 and BGCN 123) showed the highest photosynthetic rate, transpiration rate, plant height and leaf length, indicating greater adaptability to salt stress and could be promising in breeding programs.


AoB Plants ◽  
2019 ◽  
Author(s):  
Luana C C Braz ◽  
Pedro D Fernandes ◽  
Daniela D Barbosa ◽  
Wellison F Dutra ◽  
Carliane R C Silva ◽  
...  

Abstract Salinization leads to several worldwide damages in agricultural regions, mainly in semiarid regions where leaching of salt is poor due to limited and erratic rainfall. Cotton (Gossypium hirsutum L.) is a Malvaceae with wide genetic variability to salt stress. The identification of salinity tolerant genotypes is a dynamic target in a breeding program, and the selection is often based on plant phenotypes. Molecular markers are reliable tools to aid in these selection procedures. Aquaporin (AQPs) are channel proteins that play fundamental role in water relations and tolerance to environmental stresses. Plants have fine regulation of water transport through AQPs activities. In order to evaluate the AQP expressions of different cotton cultivars submitted to salt stress, we use molecular and physiological tools, based on RT-qPCR and gas exchange assays. Seven cultivars were submitted to 95 mM NaCl, started at V3 stage (21 days after emergence), during 72 h. At the end of stress treatment, root tissues were used to total RNA extraction, followed by cDNA synthesis and RT-qPCR analyzes. Three sets of specific primers were used, drawn from AQP accessions deposited in NCBI. Additionally, full expanded leaves were used to gas exchange assays and to estimate the relative water content. The dry matter of the shoots was also evaluated. Based on pattern of AQPs transcripts, we found that all semiarid tolerant cultivars (BRS Seridó, 7MH, CNPA MT 2009 152 and BRS 416) showed downregulation of AQP subtypes, mainly GhPIP1;1 and GhTIP2;1 whose action is characterized as tolerant to salinity. The results of gas exchanges, relative water content and dry matter were consistent with the molecular findings in these cultivars, confirming that GhPIP1;1 and GhTIP2;1, located at plasma membrane and vacuoles, respectively, could be adopted as AQP markers for identification of cotton tolerant to salt stress.


2017 ◽  
Vol 109 (1) ◽  
pp. 89 ◽  
Author(s):  
Soheil Karimi ◽  
Saeid ESHGHI ◽  
Saeid KARIMI ◽  
Saman HASAN-NEZHADIAN

<p>This study evaluates seed germination and growth of sweet corn under NaCl stress (0, 50, and 100 mM), after exposing the seeds to weak (15 mT) or strong (150 mT) magnetic fields (MF) for different durations (0, 6, 12, and 24 hours). Salinity reduced seed germination and plant growth. MF treatments enhanced rate and percentage of germination and improved plant growth, regardless of salinity. Higher germination rate was obtained by the stronger MF, however, the seedling were more vigorous after priming with 15 mT MF. Proline accumulation was observed in parallel with the loss of plant water content under 100 mM NaCl stress. MF prevented proline accumulation by improving water absorption. Positive correlation between H<sub>2</sub>O<sub>2</sub> accumulation and membrane thermostability (MTI) was found after MF treatments, which revealed that MF primed the plant for salinity by H<sub>2</sub>O<sub>2</sub> signaling. However, over-accumulation of H<sub>2</sub>O<sub>2</sub> after prolonged MF exposure adversely affected MTI under severe salt stress. In conclusion, magnetic priming for 6 hours was suggested for enhancing germination and growth of sweet corn under salt stress.</p>


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 859 ◽  
Author(s):  
Aziz Khan ◽  
Jie Zheng ◽  
Daniel Kean Yuen Tan ◽  
Ahmad Khan ◽  
Kashif Akhtar ◽  
...  

Manipulation of planting density and choice of variety are effective management components in any cropping system that aims to enhance the balance between environmental resource availability and crop requirements. One-time fertilization at first flower with a medium plant stand under late sowing has not yet been attempted. To fill this knowledge gap, changes in leaf structural (stomatal density, stomatal length, stomata width, stomatal pore perimeter, and leaf thickness), leaf gas exchange, and chlorophyll fluorescence attributes of different cotton varieties were made in order to change the planting densities to improve lint yield under a new planting model. A two-year field evaluation was carried out on cotton varieties—V1 (Zhongmian-16) and V2 (J-4B)—to examine the effect of changing the planting density (D1, low, 3 × 104; D2, moderate, 6 × 104; and D3, dense, 9 × 104) on cotton lint yield, leaf structure, chlorophyll fluorescence, and leaf gas exchange attribute responses. Across these varieties, J-4B had higher lint yield compared with Zhongmian-16 in both years. Plants at high density had depressed leaf structural traits, net photosynthetic rate, stomatal conductance, intercellular CO2 uptake, quenching (qP), actual quantum yield of photosystem II (ΦPSII), and maximum quantum yield of PSII (Fv/Fm) in both years. Crops at moderate density had improved leaf gas exchange traits, stomatal density, number of stomata, pore perimeter, length, and width, as well as increased qP, ΦPSII, and Fv/Fm compared with low- and high-density plants. Improvement in leaf structural and functional traits contributed to 15.9%–10.7% and 12.3%–10.5% more boll m−2, with 20.6%–13.4% and 28.9%–24.1% higher lint yield averaged across both years, respectively, under moderate planting density compared with low and high density. In conclusion, the data underscore the importance of proper agronomic methods for cotton production, and that J-4B and Zhongmian-16 varieties, grown under moderate and lower densities, could be a promising option based on improved lint yield in subtropical regions.


Sign in / Sign up

Export Citation Format

Share Document