scholarly journals A novel mutation of WFS1 gene leading to increase ER stress and cell apoptosis is associated an autosomal dominant form of Wolfram syndrome type 1

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yingying Gong ◽  
Li Xiong ◽  
Xiujun Li ◽  
Lei Su ◽  
Haipeng Xiao

Abstract Background Wolfram syndrome (WS) is a rare autosomal recessive disorder characterized by diabetes insipidus, diabetes mellitus, optic atrophy and deafness. Mutations in Wolfram syndrome 1 (WFS1) gene may cause dysregulated endoplasmic reticulum (ER)-stress and cell apoptosis, contributing to WS symptoms. The aim of this study was to identify the molecular etiology of a case of WS and to explore the functional consequence of the mutant WFS1 gene in vitro. Methods A 27 years-old Chinese man was diagnosed as wolfram syndrome type 1 based on clinical data and laboratory data. DNA sequencing of WFS1 gene and mitochondrial m.3337G > A, m.3243A > G mutations were performed in the patient and his 4 family members. Functional analysis was performed to assessed the in vitro effect of the newly identified mutant. ER stress were evaluated by ER stress response element (ERSE)-luciferase assay. Cell apoptosis were performed by CCK-8, TUNEL staining and flow cytometric analysis. Results A novel heterozygous 10-base deletion (c. 2067_2076 del10, p.W690fsX706) was identified in the patient. In vitro studies showed that mutant p.W690fsX706 increased ERSE reporter activity in the presence or absence of thapsigargin instead of wild type WFS1. Knockdown of WFS1 activated the unfolded protein response (UPR) pathway and increased the cell apoptosis, which could not be restored by transfection with WFS1 mutant (p.W690fsX706) comparable to the wild type WFS1. Conclusions A novel heterozygous mutation of WFS1 detected in the patient resulted in loss-of-function of wolframin, thereby inducing dysregulated ER stress signaling and cell apoptosis. These findings increase the spectrum of WFS1 gene mutations and broaden our insights into the roles of mutant WFS1 in the pathogenesis of WS.

Diabetologia ◽  
2021 ◽  
Author(s):  
Juliana de Almeida-Faria ◽  
Daniella E. Duque-Guimarães ◽  
Thomas P. Ong ◽  
Lucas C. Pantaleão ◽  
Asha A. Carpenter ◽  
...  

Abstract Aims/hypothesis Levels of the microRNA (miRNA) miR-126-3p are programmed cell-autonomously in visceral adipose tissue of adult offspring born to obese female C57BL/6J mice. The spectrum of miR-126-3p targets and thus the consequences of its dysregulation for adipocyte metabolism are unknown. Therefore, the aim of the current study was to identify novel targets of miR-126-3p in vitro and then establish the outcomes of their dysregulation on adipocyte metabolism in vivo using a well-established maternal obesity mouse model. Methods miR-126-3p overexpression in 3T3-L1 pre-adipocytes followed by pulsed stable isotope labelling by amino acids in culture (pSILAC) was performed to identify novel targets of the miRNA. Well-established bioinformatics algorithms and luciferase assays were then employed to confirm those that were direct targets of miR-126-3p. Selected knockdown experiments were performed in vitro to define the consequences of target dysregulation. Quantitative real-time PCR, immunoblotting, histology, euglycaemic–hyperinsulinaemic clamps and glucose tolerance tests were performed to determine the phenotypic and functional outcomes of maternal programmed miR-126-3p levels in offspring adipose tissue. Results The proteomic approach confirmed the identity of known targets of miR-126-3p (including IRS-1) and identified Lunapark, an endoplasmic reticulum (ER) protein, as a novel one. We confirmed by luciferase assay that Lunapark was a direct target of miR-126-3p. Overexpression of miR-126-3p in vitro led to a reduction in Lunapark protein levels and increased Perk (also known as Eif2ak3) mRNA levels and small interference-RNA mediated knockdown of Lunapark led to increased Xbp1, spliced Xbp1, Chop (also known as Ddit3) and Perk mRNA levels and an ER stress transcriptional response in 3T3-L1 pre-adipocytes. Consistent with the results found in vitro, increased miR-126-3p expression in adipose tissue from adult mouse offspring born to obese dams was accompanied by decreased Lunapark and IRS-1 protein levels and increased markers of ER stress. At the whole-body level the animals displayed glucose intolerance. Conclusions/interpretation Concurrently targeting IRS-1 and Lunapark, a nutritionally programmed increase in miR-126-3p causes adipose tissue insulin resistance and an ER stress response, both of which may contribute to impaired glucose tolerance. These findings provide a novel mechanism by which obesity during pregnancy leads to increased risk of type 2 diabetes in the offspring and therefore identify miR-126-3p as a potential therapeutic target. Graphical abstract


2004 ◽  
Vol 287 (4) ◽  
pp. H1730-H1739 ◽  
Author(s):  
Ron Zohar ◽  
Baoqian Zhu ◽  
Peter Liu ◽  
Jaro Sodek ◽  
C. A. McCulloch

Reperfusion-induced oxidative injury to the myocardium promotes activation and proliferation of cardiac fibroblasts and repair by scar formation. Osteopontin (OPN) is a proinflammatory cytokine that is upregulated after reperfusion. To determine whether OPN enhances fibroblast survival after exposure to oxidants, cardiac fibroblasts from wild-type (WT) or OPN-null (OPN−/−) mice were treated in vitro with H2O2to model reperfusion injury. Within 1 h, membrane permeability to propidium iodide (PI) was increased from 5 to 60% in OPN−/−cells but was increased to only 20% in WT cells. In contrast, after 1–8 h of treatment with H2O2, the percent of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-stained cells was more than twofold higher in WT than OPN−/−cells. Electron microscopy of WT cells treated with H2O2showed chromatin condensation, nuclear fragmentation, and cytoplasmic and nuclear shrinkage, which are consistent with apoptosis. In contrast, H2O2-treated OPN−/−cardiac fibroblasts exhibited cell and nuclear swelling and membrane disruption that are indicative of cell necrosis. Treatment of OPN−/−and WT cells with a cell-permeable caspase-3 inhibitor reduced the percentage of TUNEL staining by more than fourfold in WT cells but decreased staining in OPN−/−cells by ∼30%. Although the percentage of PI-permeable WT cells was reduced threefold, the percent of PI-permeable OPN−/−cells was not altered. Restoration of OPN expression in OPN−/−fibroblasts reduced the percentage of PI-permeable cells but not TUNEL staining after H2O2treatment. Thus H2O2-induced cell death in OPN-deficient cardiac fibroblasts is mediated by a caspase-3-independent, necrotic pathway. We suggest that the increased expression of OPN in the myocardium after reperfusion may promote fibrosis by protecting cardiac fibroblasts from cell death.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Huan Tao ◽  
Patricia G Yancey ◽  
Sean S Davies ◽  
L Jackson Roberts ◽  
John L Blakemore ◽  
...  

Objective: Macrophage apoptosis contributes to atherosclerotic plaque necrosis, inflammation, development and rupture. Scavenger receptor class B type I (SR-BI) is a key regulator of HDL metabolism and cellular cholesterol homeostasis. Here we examined the hypothesis that macrophage SR-BI modulates lipid-associated cellular stress and apoptosis. Methods and Results: In vitro cell apoptosis assays were performed in primary macrophages, and for in vivo evidence, we examined TUNEL staining of atherosclerotic lesions of LDLR -/- mice that were reconstituted with SR-BI -/- or WT bone marrow after 16 weeks on a Western diet. We found that SR-BI deficiency led to ~64.3% more apoptotic cells induced by oxidized LDL or free cholesterol in primary macrophages, and 6-fold more lesional apoptotic cells in SR-BI -/- →LDLR -/- mice compared to WT recipient mice. In macrophages, SR-BI deficiency caused significant accumulations of cellular free cholesterol and elevated markers of endoplasmic reticulum (ER) stress. These were exacerbated by feeding mice a high-cholesterol diet or inactivating the apolipoprotein E gene. Peroxidation of lipoproteins and cell membranes leads to modification of phosphatidylethanolamine by lipid aldehydes including isolevuglandins (IsoLG-PE). Treatment of macrophages with IsoLG-PE induced 52.6% more apoptotic cells in SR-BI -/- macrophages compared to WT. Transgenic expression of SR-BI by transfection of SR-BI -/- macrophages rescued oxidative stress-induced ER stress and cell apoptosis. SR-BI deficiency inhibited the Akt pathway compromising macrophage survival and increasing lesion necrosis. Moreover, Akt Activator was able to rescue SR-BI deficiency associated apoptosis in macrophages. Apolipoprotein E interacts with SR-BI in macrophages, co-operating for cellular lipid homeostasis and cell survival signaling. Conclusion: SR-BI protects against cell apoptosis induced by lipid stress in macrophages and atherosclerotic lesions. The underlying mechanisms are, at least in part, through reducing lipid-associated ER stress and promoting Akt activity in macrophages. Thus, we identify macrophage SR-BI-mediated apoptosis pathways as molecular targets for the prevention of atherosclerotic cardiovascular events.


2018 ◽  
Vol 51 (6) ◽  
pp. 2955-2971 ◽  
Author(s):  
Shuling Song ◽  
Jin Tan ◽  
Yuyang Miao ◽  
Zuoming Sun ◽  
Qiang  Zhang

Background/Aims: Intermittent hypoxia (IH) causes apoptosis in pancreatic β-cells, but the potential mechanisms remain unclear. Endoplasmic reticulum (ER) stress, autophagy, and apoptosis are interlocked in an extensive crosstalk. Thus, this study aimed to investigate the contributions of ER stress and autophagy to IH-induced pancreatic β-cell apoptosis. Methods: We established animal and cell models of IH, and then inhibited autophagy and ER stress by pharmacology and small interfering RNA (siRNA) in INS-1 cells and rats. The levels of biomarkers for autophagy, ER stress, and apoptosis were evaluated by immunoblotting and immunofluorescence. The number of autophagic vacuoles was observed by transmission electron microscopy. Results: IH induced autophagy activation both in vivo and in vitro, as evidenced by increased autophagic vacuole formation and LC3 turnover, and decreased SQSTM1 level. The levels of ER-stress-related proteins, including GRP78, CHOP, caspase 12, phosphorylated (p)-protein kinase RNA-like ER kinase (PERK), p-eIF2α, and activating transcription factor 4 (ATF4) were increased under IH conditions. Inhibition of ER stress with tauroursodeoxycholic acid or 4-phenylbutyrate partially blocked IH-induced autophagy in INS-1 cells. Furthermore, inhibition of PERK with GSK2606414 or siRNA blocked the ERstress-related PERK/eIF2α/ATF4 signaling pathway and inhibited autophagy induced by IH, which indicates that IH-induced autophagy activation is dependent on this signaling pathway. Promoting autophagy with rapamycin alleviated IH-induced apoptosis, whereas inhibition of autophagy with chloroquine or autophagy-related gene (Atg5 and Atg7) siRNA aggravated pancreatic β-cell apoptosis caused by IH. Conclusion: IH induces autophagy activation through the ER-stress-related PERK/eIF2α/ATF4 signaling pathway, which is a protective response to pancreatic β-cell apoptosis caused by IH.


2003 ◽  
Vol 77 (2) ◽  
pp. 1382-1391 ◽  
Author(s):  
Michiko Tanaka ◽  
Hiroyuki Kagawa ◽  
Yuji Yamanashi ◽  
Tetsutaro Sata ◽  
Yasushi Kawaguchi

ABSTRACT In recent years, several laboratories have reported on the cloning of herpes simplex virus type 1 (HSV-1) genomes as bacterial artificial chromosomes (BACs) in Escherichia coli and on procedures to manipulate these genomes by using the bacterial recombination machinery. However, the HSV-BACs reported so far are either replication incompetent or infectious, with a deletion of one or more viral genes due to the BAC vector insertion. For use as a multipurpose clone in research on HSV-1, we attempted to generate infectious HSV-BACs containing the full genome of HSV-1 without any loss of viral genes. Our results were as follows. (i) E. coli (YEbac102) harboring the full-length HSV-1 genome (pYEbac102) in which a BAC flanked by loxP sites was inserted into the intergenic region between UL3 and UL4 was constructed. (ii) pYEbac102 was an infectious molecular clone, given that its transfection into rabbit skin cells resulted in production of infectious virus (YK304). (iii) The BAC vector sequence was almost perfectly excisable from the genome of the reconstituted virus YK304 by coinfection of Vero cells with YK304 and a recombinant adenovirus, AxCANCre, expressing Cre recombinase. (iv) As far as was examined, the reconstituted viruses from pYEbac102 could not be phenotypically differentiated from wild-type viruses in vitro and in vivo. Thus, the viruses grew as well in Vero cells as did the wild-type virus and exhibited wild-type virulence in mice on intracerebral inoculation. (v) The infectious molecular clone pYEbac102 is in fact useful for mutagenesis of the HSV-1 genome by bacterial genetics, and a recombinant virus carrying amino acid substitutions in both copies of the α0 gene was generated. pYEbac102 will have multiple applications to the rapid generation of genetically engineered HSV-1 recombinants in basic research into HSV-1 and in the development of HSV vectors in human therapy.


2008 ◽  
Vol 294 (3) ◽  
pp. E540-E550 ◽  
Author(s):  
Elida Lai ◽  
George Bikopoulos ◽  
Michael B. Wheeler ◽  
Maria Rozakis-Adcock ◽  
Allen Volchuk

Chronic exposure to elevated saturated free fatty acid (FFA) levels has been shown to induce endoplasmic reticulum (ER) stress that may contribute to promoting pancreatic β-cell apoptosis. Here, we compared the effects of FFAs on apoptosis and ER stress in human islets and two pancreatic β-cell lines, rat INS-1 and mouse MIN6 cells. Isolated human islets cultured in vitro underwent apoptosis, and markers of ER stress pathways were elevated by chronic palmitate exposure. Palmitate also induced apoptosis in MIN6 and INS-1 cells, although the former were more resistant to both apoptosis and ER stress. MIN6 cells were found to express significantly higher levels of ER chaperone proteins than INS-1 cells, which likely accounts for the ER stress resistance. We attempted to determine the relative contribution that ER stress plays in palmitate-induced β-cell apoptosis. Although overexpressing GRP78 in INS-1 cells partially reduced susceptibility to thapsigargin, this failed to reduce palmitate-induced ER stress or apoptosis. In INS-1 cells, palmitate induced apoptosis at concentrations that did not result in significant ER stress. Finally, MIN6 cells depleted of GRP78 were more susceptible to tunicamycin-induced apoptosis but not to palmitate-induced apoptosis compared with control cells. These results suggest that ER stress is likely not the main mechanism involved in palmitate-induced apoptosis in β-cell lines. Human islets and MIN6 cells were found to express high levels of stearoyl-CoA desaturase-1 compared with INS-1 cells, which may account for the decreased susceptibility of these cells to the cytotoxic effects of palmitate.


2008 ◽  
Vol 415 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Jens F. Rehfeld ◽  
Xiaorong Zhu ◽  
Christina Norrbom ◽  
Jens R. Bundgaard ◽  
Anders H. Johnsen ◽  
...  

Cellular synthesis of peptide hormones requires PCs (prohormone convertases) for the endoproteolysis of prohormones. Antral G-cells synthesize the most gastrin and express PC1/3, 2 and 5/6 in the rat and human. But the cleavage sites in progastrin for each PC have not been determined. Therefore, in the present study, we measured the concentrations of progastrin, processing intermediates and α-amidated gastrins in antral extracts from PC1/3-null mice and compared the results with those in mice lacking PC2 and wild-type controls. The expression of PCs was examined by immunocytochemistry and in situ hybridization of mouse G-cells. Finally, the in vitro effect of recombinant PC5/6 on progastrin and progastrin fragments containing the relevant dibasic cleavage sites was also examined. The results showed that mouse G-cells express PC1/3, 2 and 5/6. The concentration of progastrin in PC1/3-null mice was elevated 3-fold. Chromatography showed that cleavage of the Arg36Arg37 and Arg73Arg74 sites were grossly decreased. Accordingly, the concentrations of progastrin products were markedly reduced, α-amidated gastrins (-34 and -17) being 25% of normal. Lack of PC1/3 was without effect on the third dibasic site (Lys53Lys54), which is the only processing site for PC2. Recombinant PC5/6 did not cleave any of the dibasic processing sites in progastrin and fragments containing the relevant dibasic processing sites. The complementary cleavages of PC1/3 and 2, however, suffice to explain most of the normal endoproteolysis of progastrin. Moreover, the results show that PCs react differently to the same dibasic sequences, suggesting that additional structural factors modulate the substrate specificity.


2021 ◽  
Author(s):  
Mei-Li Mo ◽  
Jin-Mei Jiang ◽  
Xiao-Ping Long ◽  
Li-Hu Xie

Abstract Objectives Present study aimed to illustrate the role of miR-144-3p in RA. Methods N1511 chondrocytes were stimulated by IL-1β to mimic RA injury model in vitro. Rats were subjected to injection of type II collagen to establish an in vivo RA model and the arthritis index score was calculated. Cell viability was determined by CCK-8. The expression of cartilage extracellular matrix proteins (Collagen II and Aggrecan) and matrix metalloproteinases protein (MMP-13) were determined by qRT-PCR and western blots. Cell apoptosis was measured by Flow cytometry. ELISA was applied to test the secretion of pro-inflammatory cytokines (IL-1β and TNF-α). Tissue injury and apoptosis were detected by HE staining and TUNEL staining. Interaction of miR-144-3p and BMP2 was verified by dual luciferase assay. Results MiR-144-3p was dramatically increased in IL-1β induced N1511 cells. MiR-144-3p depletion elevated cell viability, suppressed apoptosis, pro-inflammatory cytokine releasing, and extracellular matrix loss in IL-1β induced N1511 cells. Moreover, miR-144-3p targeted BMP2 to modulate its expression negatively. Activation of PI3K/Akt signaling compromised inhibition of BMP2 induced aggravated N1511 cell injury with IL-1β stimulation. Inhibition of miR-144-3p alleviated cartilage injury and inflammatory in RA rats. Conclusion Collectively, miR-144-3p could aggravate chondrocytes injury inflammatory response in RA via BMP2/PI3K/Akt axis.


2004 ◽  
Vol 78 (4) ◽  
pp. 2029-2036 ◽  
Author(s):  
Josephine M. McAuliffe ◽  
Sonja R. Surman ◽  
Jason T. Newman ◽  
Jeffrey M. Riggs ◽  
Peter L. Collins ◽  
...  

ABSTRACT The Y942H and L992F temperature-sensitive (ts) and attenuating amino acid substitution mutations, previously identified in the L polymerase of the HPIV3cp45 vaccine candidate, were introduced into homologous positions of the L polymerase of recombinant human parainfluenza virus type 1 (rHPIV1). In rHPIV1, the Y942H mutation specified the ts phenotype in vitro and the attenuation (att) phenotype in hamsters, whereas the L992F mutation specified neither phenotype. Each of these codon mutations was generated by a single nucleotide substitution and therefore had the potential to readily revert to a codon specifying the wild-type amino acid residue. We introduced alternative amino acid assignments at codon 942 or 992 as a strategy to increase genetic stability and to generate mutants that exhibit a range of attenuation. Twenty-three recombinants with codon substitutions at position 942 or 992 of the L protein were viable. One highly ts and att mutant, the Y942A virus, which had a difference of three nucleotides from the codon encoding a wild-type tyrosine, also possessed a high level of genetic and phenotypic stability upon serial passage in vitro at restrictive temperatures compared to that of the parent Y942H virus, which possessed a single nucleotide substitution. We obtained mutants with substitutions at position 992 that, in contrast to the L992F virus, possessed the ts and att phenotypes. These findings identify the use of alternative codon substitution mutations as a method that can be used to generate candidate vaccine viruses with increased genetic stability and/or a modified level of attenuation.


Life Sciences ◽  
1998 ◽  
Vol 63 (19) ◽  
pp. PL289-PL295 ◽  
Author(s):  
Takehiko Yamada ◽  
Masahiro Akishita ◽  
Matthew J. Pollman ◽  
Gary H. Gibbons ◽  
Victor J. Dzau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document