scholarly journals Functions and properties of nuclear lncRNAs—from systematically mapping the interactomes of lncRNAs

2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Chia-Yu Guh ◽  
Yu-Hung Hsieh ◽  
Hsueh-Ping Chu

AbstractProtein and DNA have been considered as the major components of chromatin. But beyond that, an increasing number of studies show that RNA occupies a large amount of chromatin and acts as a regulator of nuclear architecture. A significant fraction of long non-coding RNAs (lncRNAs) prefers to stay in the nucleus and cooperate with protein complexes to modulate epigenetic regulation, phase separation, compartment formation, and nuclear organization. An RNA strand also can invade into double-stranded DNA to form RNA:DNA hybrids (R-loops) in living cells, contributing to the regulation of gene expression and genomic instability. In this review, we discuss how nuclear lncRNAs orchestrate cellular processes through their interactions with proteins and DNA and summarize the recent genome-wide techniques to study the functions of lncRNAs by revealing their interactomes in vivo.

Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 366
Author(s):  
Rungaroon Suksamran ◽  
Treenut Saithong ◽  
Chinae Thammarongtham ◽  
Saowalak Kalapanulak

Long non-coding RNAs (lncRNAs) play important roles in the regulation of complex cellular processes, including transcriptional and post-transcriptional regulation of gene expression relevant for development and stress response, among others. Compared to other important crops, there is limited knowledge of cassava lncRNAs and their roles in abiotic stress adaptation. In this study, we performed a genome-wide study of ncRNAs in cassava, integrating genomics- and transcriptomics-based approaches. In total, 56,840 putative ncRNAs were identified, and approximately half the number were verified using expression data or previously known ncRNAs. Among these were 2229 potential novel lncRNA transcripts with unmatched sequences, 250 of which were differentially expressed in cold or drought conditions, relative to controls. We showed that lncRNAs might be involved in post-transcriptional regulation of stress-induced transcription factors (TFs) such as zinc-finger, WRKY, and nuclear factor Y gene families. These findings deepened our knowledge of cassava lncRNAs and shed light on their stress-responsive roles.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Andrew R Bassett ◽  
Asifa Akhtar ◽  
Denise P Barlow ◽  
Adrian P Bird ◽  
Neil Brockdorff ◽  
...  

Although a small number of the vast array of animal long non-coding RNAs (lncRNAs) have known effects on cellular processes examined in vitro, the extent of their contributions to normal cell processes throughout development, differentiation and disease for the most part remains less clear. Phenotypes arising from deletion of an entire genomic locus cannot be unequivocally attributed either to the loss of the lncRNA per se or to the associated loss of other overlapping DNA regulatory elements. The distinction between cis- or trans-effects is also often problematic. We discuss the advantages and challenges associated with the current techniques for studying the in vivo function of lncRNAs in the light of different models of lncRNA molecular mechanism, and reflect on the design of experiments to mutate lncRNA loci. These considerations should assist in the further investigation of these transcriptional products of the genome.


2020 ◽  
Author(s):  
Sabrina Dietz ◽  
Miguel Vasconcelos Almeida ◽  
Emily Nischwitz ◽  
Jan Schreier ◽  
Nikenza Viceconte ◽  
...  

AbstractTelomeres are bound by dedicated protein complexes, like shelterin in mammals, which protect telomeres from DNA damage. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to screen for proteins binding to C. elegans telomeres, and identified TEBP-1 and TEBP-2, two paralogs that associate to telomeres in vitro and in vivo. TEBP-1 and TEBP-2 are expressed in the germline and during embryogenesis. tebp-1 and tebp-2 mutants display strikingly distinct phenotypes: tebp-1 mutants have longer telomeres than wild-type animals, while tebp-2 mutants display shorter telomeres and a mortal germline, a phenotype characterized by transgenerational germline deterioration. Notably, tebp-1; tebp-2 double mutant animals have synthetic sterility, with germlines showing signs of severe mitotic and meiotic arrest. TEBP-1 and TEBP-2 form a telomeric complex with the known single-stranded telomere-binding proteins POT-1, POT-2, and MRT-1. Furthermore, we find that POT-1 bridges the double- stranded binders TEBP-1 and TEBP-2, with the single-stranded binders POT-2 and MRT-1. These results describe the first telomere-binding complex in C. elegans, with TEBP-1 and TEBP-2, two double-stranded telomere binders required for fertility and that mediate opposite telomere dynamics.


2020 ◽  
Vol 6 (16) ◽  
pp. eaaz9899
Author(s):  
Yong Chi ◽  
John H. Carter ◽  
Jherek Swanger ◽  
Alexander V. Mazin ◽  
Robert L. Moritz ◽  
...  

Cyclin-dependent kinase 2 (CDK2) controls cell division and is central to oncogenic signaling. We used an “in situ” approach to identify CDK2 substrates within nuclei isolated from cells expressing CDK2 engineered to use adenosine 5′-triphosphate analogs. We identified 117 candidate substrates, ~40% of which are known CDK substrates. Previously unknown candidates were validated to be CDK2 substrates, including LSD1, DOT1L, and Rad54. The identification of many chromatin-associated proteins may have been facilitated by labeling conditions that preserved nuclear architecture and physiologic CDK2 regulation by endogenous cyclins. Candidate substrates include proteins that regulate histone modifications, chromatin, transcription, and RNA/DNA metabolism. Many of these proteins also coexist in multi-protein complexes, including epigenetic regulators, that may provide new links between cell division and other cellular processes mediated by CDK2. In situ phosphorylation thus revealed candidate substrates with a high validation rate and should be readily applicable to other nuclear kinases.


2012 ◽  
Vol 40 (19) ◽  
pp. 9543-9556 ◽  
Author(s):  
Nicholas E. E. Allenby ◽  
Emma Laing ◽  
Giselda Bucca ◽  
Andrzej M. Kierzek ◽  
Colin P. Smith

2015 ◽  
Vol 103 (1) ◽  
pp. 40-43 ◽  
Author(s):  
Mina Kazemzadeh ◽  
Reza Safaralizadeh ◽  
Mohammad Ali HosseinPour feizi ◽  
Mohammad Hossein Somi ◽  
Behrooz Shokoohi

Background Long non-coding RNAs (lncRNAs), a class of regulatory RNAs, play a major role in various cellular processes. Long intergenic non-coding RNAs (lincRNAs), a subclass of lncRNAs, are involved in the trans- and cis-regulation of gene expression. In the case of cis-regulation, by recruiting chromatin-modifying complexes, lincRNAs influence adjacent gene expression. Methods We used quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) to evaluate the coexpression of LOC100287225, a lincRNA, and DCC, one of its adjacent genes that is often decreased in colorectal cancer, in pairs of tumor and adjacent tumor-free tissues of 30 colorectal cancer patients. Results The qRT-PCR results revealed the misregulation of these genes during tumorigenesis. Their relative expression levels were significantly lower in tumor tissues than adjacent tumor-free tissues. However, the analysis found no significant correlation between reduced expression of these genes. Conclusions Our study demonstrated the concurrent misregulation of DCC and LOC100287225 in colorectal cancer.


2015 ◽  
Vol 20 (2) ◽  
Author(s):  
Dan Qin ◽  
Cunshuan Xu

AbstractLong non-coding RNAs (lncRNAs) have attracted considerable attention recently due to their involvement in numerous key cellular processes and in the development of various disorders. New high-throughput methods enable their study on a genome-wide scale. Numerous lncRNAs have been identified and characterized as important members of the biological regulatory network, with significant roles in regulating gene expression at the epigenetic, transcriptional and post-transcriptional levels. This paper summarizes the diverse mechanisms of action of these lncRNAs and looks at the study strategies in this field. A major challenge in future study is to establish more effective bioinformatics and experimental methods to explore the functions, detailed mechanisms of action and structures deciding the functional diversity of lncRNAs, since the vast majority remain unresolved.


2016 ◽  
Vol 216 (1) ◽  
pp. 41-51 ◽  
Author(s):  
Enrico Monachino ◽  
Lisanne M. Spenkelink ◽  
Antoine M. van Oijen

Single-molecule manipulation and imaging techniques have become important elements of the biologist’s toolkit to gain mechanistic insights into cellular processes. By removing ensemble averaging, single-molecule methods provide unique access to the dynamic behavior of biomolecules. Recently, the use of these approaches has expanded to the study of complex multiprotein systems and has enabled detailed characterization of the behavior of individual molecules inside living cells. In this review, we provide an overview of the various force- and fluorescence-based single-molecule methods with applications both in vitro and in vivo, highlighting these advances by describing their applications in studies on cytoskeletal motors and DNA replication. We also discuss how single-molecule approaches have increased our understanding of the dynamic behavior of complex multiprotein systems. These methods have shown that the behavior of multicomponent protein complexes is highly stochastic and less linear and deterministic than previously thought. Further development of single-molecule tools will help to elucidate the molecular dynamics of these complex systems both inside the cell and in solutions with purified components.


Author(s):  
James A. Oo ◽  
Ralf P. Brandes ◽  
Matthias S. Leisegang

AbstractLong non-coding RNAs were once considered as “junk” RNA produced by aberrant DNA transcription. They are now understood to play central roles in diverse cellular processes from proliferation and migration to differentiation, senescence and DNA damage control. LncRNAs are classed as transcripts longer than 200 nucleotides that do not encode a peptide. They are relevant to many physiological and pathophysiological processes through their control of fundamental molecular functions. This review summarises the recent progress in lncRNA research and highlights the far-reaching physiological relevance of lncRNAs. The main areas of lncRNA research encompassing their characterisation, classification and mechanisms of action will be discussed. In particular, the regulation of gene expression and chromatin landscape through lncRNA control of proteins, DNA and other RNAs will be introduced. This will be exemplified with a selected number of lncRNAs that have been described in numerous physiological contexts and that should be largely representative of the tens-of-thousands of mammalian lncRNAs. To some extent, these lncRNAs have inspired the current thinking on the central dogmas of epigenetics, RNA and DNA mechanisms.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ze-hua Wang ◽  
Yue-nan Zhou ◽  
Jing Yang ◽  
Xi-qian Ye ◽  
Min Shi ◽  
...  

Polydnaviruses (PDVs), classified into two genera, bracoviruses (BVs) and ichnoviruses (IVs), are large, double-stranded DNA viruses, which are beneficial symbionts of parasitoid wasps. PDVs do not replicate in their infected lepidopteran hosts. BV circles have been demonstrated to be integrated into host genomic DNA after natural parasitization. However, the integrations of IV circles in vivo remain largely unknown. Here, we analyzed the integration of Diadegma semiclausum ichnovirus (DsIV) in the genomic DNA of parasitized Plutella xylostella hemocytes. We found that DsIV circles are present in host hemocytes with non-integrated and integrated forms. Moreover, DsIV integrates its DNA circles into the host genome by two distinct strategies, conservatively, and randomly. We also found that four conserved-broken circles share similar motifs containing two reverse complementary repeats at their breaking sites, which were host integration motifs (HIMs). We also predicted HIMs of eight circles from other ichnoviruses, indicating that a HIM-mediated specific mechanism was conserved in IV integrations. Investigation of DsIV circle insertion sites of the host genome revealed the enrichment of microhomologies between the host genome and the DsIV circles at integration breakpoints. These findings will deepen our understanding of the infections of PDVs, especially IVs.


Sign in / Sign up

Export Citation Format

Share Document