scholarly journals Synergism between the phosphatidylinositol 3-kinase p110β isoform inhibitor AZD6482 and the mixed lineage kinase 3 inhibitor URMC-099 on the blockade of glioblastoma cell motility and focal adhesion formation

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hua-fu Zhao ◽  
Chang-peng Wu ◽  
Xiu-ming Zhou ◽  
Peng-yu Diao ◽  
Yan-wen Xu ◽  
...  

Abstract Background Glioblastoma multiforme, the most aggressive and malignant primary brain tumor, is characterized by rapid growth and extensive infiltration to neighboring normal brain parenchyma. Our previous studies delineated a crosstalk between PI3K/Akt and JNK signaling pathways, and a moderate anti-glioblastoma synergism caused by the combined inhibition of PI3K p110β (PI3Kβ) isoform and JNK. However, this combination strategy is not potent enough. MLK3, an upstream regulator of ERK and JNK, may replace JNK to exert stronger synergism with PI3Kβ. Methods To develop a new combination strategy with stronger synergism, the expression pattern and roles of MLK3 in glioblastoma patient’s specimens and cell lines were firstly investigated. Then glioblastoma cells and xenografts in nude mice were treated with the PI3Kβ inhibitor AZD6482 and the MLK3 inhibitor URMC-099 alone or in combination to evaluate their combination effects on tumor cell growth and motility. The combination effects on cytoskeletal structures such as lamellipodia and focal adhesions were also evaluated. Results MLK3 protein was overexpressed in both newly diagnosed and relapsing glioblastoma patients’ specimens. Silencing of MLK3 using siRNA duplexes significantly suppressed migration and invasion, but promoted attachment of glioblastoma cells. Combined inhibition of PI3Kβ and MLK3 exhibited synergistic inhibitory effects on glioblastoma cell proliferation, migration and invasion, as well as the formation of lamellipodia and focal adhesions. Furthermore, combination of AZD6482 and URMC-099 effectively decreased glioblastoma xenograft growth in nude mice. Glioblastoma cells treated with this drug combination showed reduced phosphorylation of Akt and ERK, and decreased protein expression of ROCK2 and Zyxin. Conclusion Taken together, combination of AZD6482 and URMC-099 showed strong synergistic anti-tumor effects on glioblastoma in vitro and in vivo. Our findings suggest that combined inhibition of PI3Kβ and MLK3 may serve as an attractive therapeutic approach for glioblastoma multiforme.

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi31-vi31
Author(s):  
Nayuta Higa ◽  
Yoshinari Shinsato ◽  
Tomoko Takajyo ◽  
Hajime Yonezawa ◽  
Hiroyuki Uchida ◽  
...  

Abstract INTRODUCTION Glioblastoma multiforme is the most common primary malignant brain tumour in adults. It is characterised by rapid proliferation, aggressive migration, and invasion into normal brain tissue. Formin proteins have been implicated in cancer progression, invasion, and migration. However, the role of FMNL1 in cancer remains unclear. We are the first to investigate FMNL1 in GBM. METHODS Clinical specimens were obtained from tumours surgically removed and pathologically confirmed as GBM from 217 GBM patients treated from 2000 to 2015 at the Department of Neurosurgery, Kagoshima University Hospital. We studied the expression of FMNL1 in glioblastoma samples by immunohistochemistry to analyse the correlation between FMNL1 expression, clinicopathologic variables, and patient survival. Migration and invasion assays were used to verify the effect of FMNL1 on glioblastoma cell lines. Microarray data were downloaded from TCGA and analysed using Gene Set Enrichment Analysis (GSEA). RESULTS FMNL1 was found to be a predictor of poor prognosis in a cohort of 217 cases (P < 0.001). GSEA showed that upregulation and downregulation of FMNL1 were associated with mesenchymal and proneural markers, respectively. Contrarily, downregulation of FMNL1 suppressed migration and invasion of glioblastoma multiforme cells via DIAPH1 and GOLGA2, respectively. Downregulation of FMNL1 also suppressed assembly of actin fibres, induced morphological changes, and diminished filamentous actin. CONCLUSION Our studies show that abundant FMNL1 expression in GBM patients is correlated with an unfavourable prognosis. FMNL1 is a promising therapeutic target and a useful biomarker for GBM progression.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Wen Song ◽  
Zhenling Wang ◽  
Pengcheng Kan ◽  
Zhuolin Ma ◽  
Yaru Wang ◽  
...  

Background. BCL6 was a critical prooncogene of human B-cell lymphomas which promoted tumor progress and contributed to malignant behavior in several kinds of cancers. This study was to detect the expression of BCL6 and its biological effect on glioma. Methods. RT-PCR and Western blot were used to detect the expression of BCL6 mRNA and protein in tissues and glioblastoma cell lines. The expression of BCL6 was knockdown in two glioblastoma cell lines (U87 and U251) using BCL6 shRNA. The CCK8, colony-formation, flow cytometry, Transwell, and wound-healing assays were used to evaluate the malignant phenotypic change of glioblastoma cells. Results. The expression of BCL6 was higher in glioma tissues and glioblastoma cell lines than normal tissues. Knockdown of BCL6 expression reduced the proliferation, migration, and invasion of glioblastoma cells. Moreover, knockdown of BCL6 changed expression of proteins related to malignant behaviors of glioblastoma cells. The suppression of BCL6 could increase chemosensitivity of U87 and U251 to temozolomide. Downregulation of BCL6 levels suppressed the expression of BCL2, cyclin D1, MMP2, and MMP9 proteins as well as two classic signaling pathway proteins p-AKT and p-ERK. Simultaneously, BAX and p21 protein levels were upregulated along with knockdown of BCL6. Conclusions. Our results indicated that BCL6 may be a tumor oncogene involved in the progression of glioma via affecting AKT and MAPK signaling pathways.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Li Wei ◽  
Ya Peng ◽  
Naiyuan Shao ◽  
Peng Zhou

Abstract Background Glioblastoma remains one of the most lethal brain cancers. T-cell immunoglobulin and mucin domain 1 (Tim-1) is associated with various immune diseases. The molecular mechanism of Tim-1 in regulating glioblastoma cell proliferation, invasion, and migration is still unknown. Moreover, it has shown that miR-133a plays an important role in glioblastoma. However, little is known about the interaction between Tim-1 and miR-133a in glioblastoma. Methods Tim-1 expression in glioblastoma and normal brain tissues was detected by qPCR, Western Blot and IHC. After Tim-1 knockdown in U251 and U87 cells, genes showing significantly differential expression, along with the significant differential miRNAs were analyzed using RNA-seq analysis. The binding sites were verified using dual-luciferase reporter gene assay. U251 and U87 cells were allocated into the small harpin-negative control (sh-NC), sh-Tim-1, sh-Tim-1 + inhibitor NC, and sh-Tim-1 + miR-133a inhibitor group. Cell proliferation, migration, and invasion were determined by CCK-8, flow cytometry, wound-healing and Transwell assays, respectively. Next, U251 and U87 cells were allocated into the mimic NC, miR-133a mimic, miR-133a mimic + pcDNA3.1, and miR-133a mimic + pcDNA3.1-TGFBR1 groups, followed by the detection of cell proliferation, migration, and invasion. Western blot was used to identify the expression of vital kinases in the Wnt/β-catenin pathway. Results Tim-1 was highly expressed in glioblastoma tissues compared with that in normal brain tissues. RNA-seq analysis showed that Tim-1 knockdown could lead to the downregulation of TGFBR1 and the upregulation of miR-133a. The binding sites between TGFBR1 and miR-133a were confirmed. Tim-1 knockdown impaired the invasion, migration, proliferation of U251 and U87 cells, which could be reversed by miR-133a downregulation. miR-133a upregulation inhibited the proliferation, invasion, and migration of U251 and U87 cells, which could be reversed by TGFBR1 upregulation. Tim-1 knockdown and miR-133a upregulation could inhibit the activation of the Wnt/β-catenin pathway, while the elevation of TGFBR1 showed opposite effects. Conclusion Tim-1 knockdown inhibited glioblastoma cell proliferation, invasion, and migration through the miR-133a/TGFBR1 axis and restrained the activation of the Wnt/β-catenin pathway.


2018 ◽  
Vol 48 (3) ◽  
pp. 1332-1346 ◽  
Author(s):  
Yieun Jung ◽  
So-Hee Ahn ◽  
Hyunju Park ◽  
Sang Hui Park ◽  
Kyungsun Choi ◽  
...  

Background/Aims: Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The defining characteristics of GBM are diffuse infiltration of tumor cells into normal brain parenchyma, rapid growth, a high degree of infiltration of microglia and macrophages, and the presence of necrosis. Microglia/macrophages are frequently found in gliomas and they extensively infiltrate GBM tissue, up to 30% of total tumor mass. However, little is known about the effect of necrotic cells (NCs) on microglia infiltration in GBM and the tumor-infiltrating microglia-induced factors in GBMs. Methods: In this study, to address whether necrosis or necrosis-exposed GBM cells affect the degree of microglia/macrophage infiltration, migration and invasion/infiltration assays were performed. Culture supernatants and nuclear extracts of CRT-MG cells treated or untreated with necrotic cells were analyzed using a chemokine array and electrophoretic mobility shift assay, respectively. Results: The presence of NCs promoted the migration/infiltration of microglia, and GBM cell line CRT-MG cells exposed to NCs further enhanced the migration and infiltration of HMO6 microglial cells. Treatment with NCs induced mRNA and protein expression of chemokines such as <unterline>M</unterline>onocyte <unterline>C</unterline>hemoattractant <unterline>P</unterline>rotein-1 (CCL2/MCP-1) and <unterline>M</unterline>acrophage <unterline>I</unterline>nflammatory <unterline>P</unterline>rotein-3α (CCL20/MIP-3α) in CRT-MG cells. In particular, CCL2/MCP-1 and CCL20/MIP-3α were significantly increased in NC-treated CRT-MG cells. NCs induced DNA binding of the transcription factors <unterline>N</unterline>uclear <unterline>F</unterline>actor (NF)-κB and <unterline>A</unterline>ctivator <unterline>P</unterline>rotein 1 (AP-1) to the CCL2/MCP-1 and CCL20/MIP-3α promoters, leading to increased CCL2/MCP-1 and CCL20/MIP-3α mRNA and protein expression in CRT-MG cells. Conclusion: These results provide evidence that NCs induce the expression of CCL2/MCP-1 and CCL20/MIP-3α in glioblastoma cells through activation of NF-κB and AP-1 and facilitate the infiltration of microglia into tumor tissues.


2019 ◽  
Vol 20 (24) ◽  
pp. 6355
Author(s):  
Nayuta Higa ◽  
Yoshinari Shinsato ◽  
Muhammad Kamil ◽  
Takuro Hirano ◽  
Tomoko Takajo ◽  
...  

Glioblastoma multiforme (GBM), the most common primary malignant brain tumor in adults, is characterized by rapid proliferation, aggressive migration, and invasion into normal brain tissue. Formin proteins have been implicated in these processes. However, the role of formin-like 1 (FMNL1) in cancer remains unclear. We studied FMNL1 expression in glioblastoma samples using immunohistochemistry. We sought to analyze the correlation between FMNL1 expression, clinicopathologic variables, and patient survival. Migration and invasion assays were used to verify the effect of FMNL1 on glioblastoma cell lines. Microarray data were downloaded from The Cancer Genome Atlas and analyzed using gene set enrichment analysis (GSEA). FMNL1 was an independent predictor of poor prognosis in a cohort of 217 glioblastoma multiforme cases (p < 0.001). FMNL1 expression was significantly higher in the mesenchymal subtype. FMNL1 upregulation and downregulation were associated with mesenchymal and proneural markers in the GSEA, respectively. These data highlight the important role of FMNL1 in the neural-to-mesenchymal transition. Conversely, FMNL1 downregulation suppressed glioblastoma multiforme cell migration and invasion via DIAPH1 and GOLGA2, respectively. FMNL1 downregulation also suppressed actin fiber assembly, induced morphological changes, and diminished filamentous actin. FMNL1 is a promising therapeutic target and a useful biomarker for GBM progression.


2020 ◽  
Vol 21 (8) ◽  
pp. 2746 ◽  
Author(s):  
Natalia Malek ◽  
Ewa Mrówczyńska ◽  
Aleksandra Michrowska ◽  
Ewa Mazurkiewicz ◽  
Iuliia Pavlyk ◽  
...  

Non-muscle actins have been studied for many decades; however, the reason for the existence of both isoforms is still unclear. Here we show, for the first time, a successful inactivation of the ACTB (CRISPR clones with inactivated ACTB, CR-ACTB) and ACTG1 (CRISPR clones with inactivated ACTG1, CR-ACTG1) genes in human melanoma cells (A375) via the RNA-guided D10A mutated Cas9 nuclease gene editing [CRISPR/Cas9(D10A)] technique. This approach allowed us to evaluate how melanoma cell motility was impacted by the lack of either β actin coded by ACTB or γ actin coded by ACTG1. First, we observed different distributions of β and γ actin in the cells, and the absence of one actin isoform was compensated for via increased expression of the other isoform. Moreover, we noted that γ actin knockout had more severe consequences on cell migration and invasion than β actin knockout. Next, we observed that the formation rate of bundled stress fibers in CR-ACTG1 cells was increased, but lamellipodial activity in these cells was impaired, compared to controls. Finally, we discovered that the formation rate of focal adhesions (FAs) and, subsequently, FA-dependent signaling were altered in both the CR-ACTB and CR-ACTG1 clones; however, a more detrimental effect was observed for γ actin-deficient cells. Our research shows that both non-muscle actins play distinctive roles in melanoma cells’ FA formation and motility.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi65-vi65
Author(s):  
Hiroyuki Michiue ◽  
Nobushige Tsuboi ◽  
Keiichiro Hayashi ◽  
Hideki Matsui ◽  
Kazuhiko Kurozumi

Abstract INTRODUCTION Invasion of Glioblastoma (GBM) cells into normal brain is the major cause of poor prognosis and requires dynamic reorganization of the actin cytoskeleton, which includes lamellipodial protrusions, focal adhesions, and stress fibers at the leading edge of GBM cells. Therefore, we hypothesized that the inhibition of actin polymerization with existing medication could lead to clinical GBM treatment directly in short time. The Drug Repositioning system is also known as drug repurposing or drug reprofiling and understood as the process of redeveloping a compound for use in a different disease. In this time, we would show the new direction of drug development with drug repositioning. MATERIALS AND METHODS We adopted a drug repositioning system for screening with a pyrene-actin-based actin polymerization assay and identified fluvoxamine, a clinically used antidepressant. Fluvoxamine, selective serotonin reuptake inhibitor, was a potent inhibitor of actin polymerization and confirmed as drug penetration through the blood–brain barrier (BBB) and accumulation of whole brain including brain tumor with no drug toxicity. RESULTS Fluvoxamine inhibited serum-induced ruffle formation, cell migration, and invasion of human GBM and glioma stem cells in vitro by suppressing FAK signaling. Fluvoxamine showed no drug toxicity. Daily treatment of athymic mice bearing human glioma-initiating cells with fluvoxamine blocked tumor cell invasion and prolonged the survival with almost same doze of anti-depressant effect. CONCLUSIONS The SSRI group has big potential for clinical GBM treatment with low cost, short time and low side effect.


2018 ◽  
Vol 17 (7) ◽  
pp. 557-567 ◽  
Author(s):  
Hua-Fu Zhao ◽  
Gang Wang ◽  
Chang-Peng Wu ◽  
Xiu-Ming Zhou ◽  
Jing Wang ◽  
...  

Background: Glioblastoma multiforme (GBM) is the most aggressive and malignant primary brain tumor characterized by rapid growth and extensive infiltration to neighboring normal brain parenchyma, which contribute to tumor recurrence and poor prognosis. Myricetin is a natural flavonoid with potent anti-oxidant, anti-inflammatory and anti-cancer activities, which may serve as a potential and harmless agent for GBM treatment. Methods: To investigate the anti-glioblastoma effects of myricetin, GBM cells were treated with myricetin alone or in combination with temozolomide. Its effects on GBM cell motility and cytoskeletal structures including lamellipodia, focal adhesions and membrane ruffles were also evaluated. Results: We showed that myricetin alone inhibited glioblastoma U-87 MG cell proliferation, migration and invasion, whereas combination of myricetin and temozolomide did not exhibit any synergistic effect. The inhibitory effect on GBM cell proliferation is independent of PTEN status. Moreover, myricetin showed less cytotoxicity to normal astrocytes than GBM cells. Formation of lamellipodia, focal adhesions, membrane ruffles and vasculogenic mimicry were blocked by myricetin, and phosphorylation of ROCK2, paxillin and cortactin was suppressed. In addition, myricetin could inhibit PI3K/Akt and JNK signaling, and bind to a series of kinases and scaffold proteins including PI3K catalytic isoforms (p110α, p110β and p110δ), PDK1, JNK, c-Jun, ROCK2, paxillin, vinculin and VEcadherin. Conclusions: In conclusion, myricetin is a multi-targeted drug that has potent anti-migratory and antiinvasive effects on GBM cells, and suppresses formation of lamellipodia and focal adhesions, suggesting that it may serve as an alternative option for GBM treatment.


Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769457 ◽  
Author(s):  
Ryuk-Jun Kwon ◽  
Myoung-Eun Han ◽  
Youn-Jae Kim ◽  
Yun Hak Kim ◽  
Ji-young Kim ◽  
...  

Zinc-fingers and homeoboxes 1 (ZHX1) is a nuclear transcription repressor and known to be involved in cell differentiation and tumorigenesis. However, the pathophysiological roles of ZHX1 have not been characterized in glioblastoma. We examined ZHX1 expression in glioblastoma patients’ tissues and analyzed overall survival of the patients based on expression level of ZHX1. We also examined the effects of ZHX1 on proliferation and motility of glioblastoma cells. In silico analysis and immunohistochemical studies showed that the messenger RNA and protein expressions of ZHX1 were higher in the tissues of glioblastoma patients than in normal brain tissues, and that its overexpression was associated with reduced survival. In vitro, the downregulation of ZHX1 decreased the proliferation, migration, and invasion of glioblastoma cells, whereas its upregulation had the opposite effects. In addition, we showed ZHX1 could contribute to glioblastoma progression via the regulations of TWIST1 and SNAI2. Taken together, this study demonstrates that ZHX1 plays crucial roles in the progression of glioblastoma, and its findings suggest that ZHX1 be viewed as a potential prognostic maker and therapeutic target of glioblastoma.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jia-Huang Liu ◽  
Qi-Fei Wu ◽  
Jun-Ke Fu ◽  
Xiang-Ming Che ◽  
Hai-Jun Li

Obesity could increase the risk of esophageal squamous cell carcinoma (ESCC) and affect its growth and progression, but the mechanical links are unclear. The objective of the study was to explore the impact of obesity on ESCC growth and progression utilizing in vivo trials and cell experiments in vitro. Diet-induced obese and lean nude mice were inoculated with TE-1 cells, then studied for 4 weeks. Serum glucose, insulin, leptin, and visfatin levels were assayed. Sera of nude mice were obtained and then utilized to culture TE-1. MTT, migration and invasion assays, RT-PCR, and Western blotting were used to analyze endocrine effect of obesity on cell proliferation, migration, invasion, and related genes expression of TE-1. Obese nude mice bore larger tumor xenografts than lean animals, and were hyperglycemic and hyperinsulinemic with an elevated level of leptin and visfatin in sera, and also were accompanied by a fatty liver. As for the subcutaneous tumor xenograft model, tumors were more aggressive in obese nude mice than lean animals. Tumor weight correlated positively with mouse body weight, liver weight of mice, serum glucose, HOMA-IR, leptin, and visfatin. Obesity prompted significant TE-1 cell proliferation, migration, and invasion by endocrine mechanisms and impacted target genes. The expression of AMPK and p-AMPK protein decreased significantly ( P < 0.05 ); MMP9, total YAP, p-YAP, and nonphosphorylated YAP protein increased significantly ( P < 0.05 ) in the cells cultured with conditioned media and xenograft tumor from the obese group; the mRNA expression of AMPK decreased significantly ( P < 0.05 ); YAP and MMP9 mRNA expression increased significantly ( P < 0.05 ) in the cells exposed to conditioned media from the obese group. In conclusion, the altered adipokine milieu and metabolites in the context of obesity may promote ESCC growth in vivo; affect proliferation, migration, and invasion of ESCC cells in vitro; and regulate MMP9 and AMPK-YAP signaling pathway through complex effects including the endocrine effect.


Sign in / Sign up

Export Citation Format

Share Document