scholarly journals ANGI-06. FUNCTION OF FORMIN-LIKE 1 (FMNL1) IN GLIOBLASTOMA MULTIFORME

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi31-vi31
Author(s):  
Nayuta Higa ◽  
Yoshinari Shinsato ◽  
Tomoko Takajyo ◽  
Hajime Yonezawa ◽  
Hiroyuki Uchida ◽  
...  

Abstract INTRODUCTION Glioblastoma multiforme is the most common primary malignant brain tumour in adults. It is characterised by rapid proliferation, aggressive migration, and invasion into normal brain tissue. Formin proteins have been implicated in cancer progression, invasion, and migration. However, the role of FMNL1 in cancer remains unclear. We are the first to investigate FMNL1 in GBM. METHODS Clinical specimens were obtained from tumours surgically removed and pathologically confirmed as GBM from 217 GBM patients treated from 2000 to 2015 at the Department of Neurosurgery, Kagoshima University Hospital. We studied the expression of FMNL1 in glioblastoma samples by immunohistochemistry to analyse the correlation between FMNL1 expression, clinicopathologic variables, and patient survival. Migration and invasion assays were used to verify the effect of FMNL1 on glioblastoma cell lines. Microarray data were downloaded from TCGA and analysed using Gene Set Enrichment Analysis (GSEA). RESULTS FMNL1 was found to be a predictor of poor prognosis in a cohort of 217 cases (P < 0.001). GSEA showed that upregulation and downregulation of FMNL1 were associated with mesenchymal and proneural markers, respectively. Contrarily, downregulation of FMNL1 suppressed migration and invasion of glioblastoma multiforme cells via DIAPH1 and GOLGA2, respectively. Downregulation of FMNL1 also suppressed assembly of actin fibres, induced morphological changes, and diminished filamentous actin. CONCLUSION Our studies show that abundant FMNL1 expression in GBM patients is correlated with an unfavourable prognosis. FMNL1 is a promising therapeutic target and a useful biomarker for GBM progression.

2021 ◽  
Vol 11 ◽  
Author(s):  
Rui Yang ◽  
Mingjun Ma ◽  
Sihui Yu ◽  
Xi Li ◽  
Jiawen Zhang ◽  
...  

Peptidase domain containing associated with muscle regeneration 1 (PAMR1) is frequently lost in breast cancer samples and is considered as a tumor suppressor. The roles and mechanisms of PAMR1 in other types of cancers are still unclear. In our present study, we identified PAMR1 as an invasion-related regulator in cervical cancer. Public database and immunohistochemical (IHC) analysis showed that the expression level of PAMR1 in cervical cancer tissues was lower than that in normal cervix tissues and was negatively related to clinicopathologic features. The high expression of PAMR1 also predicted a better prognosis of cervical cancer patients. CCK8, Transwell, and wound-healing assays demonstrated that knockdown of PAMR1 facilitated the proliferation, migration, and invasion of cervical cancer cells. Additionally, gene set enrichment analysis (GSEA) showed a variety of cancer-related pathways potentially activated or suppressed by PAMR1. Moreover, we verified that PAMR1 inhibited MYC target and mTORC1 signaling pathways. In conclusion, our study revealed the suppressor role of PAMR1 in cervical cancer, providing a new insight into the molecular mechanism of cervical cancer progression.


2019 ◽  
Vol 20 (24) ◽  
pp. 6355
Author(s):  
Nayuta Higa ◽  
Yoshinari Shinsato ◽  
Muhammad Kamil ◽  
Takuro Hirano ◽  
Tomoko Takajo ◽  
...  

Glioblastoma multiforme (GBM), the most common primary malignant brain tumor in adults, is characterized by rapid proliferation, aggressive migration, and invasion into normal brain tissue. Formin proteins have been implicated in these processes. However, the role of formin-like 1 (FMNL1) in cancer remains unclear. We studied FMNL1 expression in glioblastoma samples using immunohistochemistry. We sought to analyze the correlation between FMNL1 expression, clinicopathologic variables, and patient survival. Migration and invasion assays were used to verify the effect of FMNL1 on glioblastoma cell lines. Microarray data were downloaded from The Cancer Genome Atlas and analyzed using gene set enrichment analysis (GSEA). FMNL1 was an independent predictor of poor prognosis in a cohort of 217 glioblastoma multiforme cases (p < 0.001). FMNL1 expression was significantly higher in the mesenchymal subtype. FMNL1 upregulation and downregulation were associated with mesenchymal and proneural markers in the GSEA, respectively. These data highlight the important role of FMNL1 in the neural-to-mesenchymal transition. Conversely, FMNL1 downregulation suppressed glioblastoma multiforme cell migration and invasion via DIAPH1 and GOLGA2, respectively. FMNL1 downregulation also suppressed actin fiber assembly, induced morphological changes, and diminished filamentous actin. FMNL1 is a promising therapeutic target and a useful biomarker for GBM progression.


2021 ◽  
Vol 10 ◽  
Author(s):  
Wenhua Xu ◽  
Wenna Yang ◽  
Chunfeng Wu ◽  
Xiaocong Ma ◽  
Haoyu Li ◽  
...  

Enolase 1 (ENO1) is an oxidative stress protein expressed in endothelial cells. This study aimed to investigate the correlation of ENO1 with prognosis, tumor stage, and levels of tumor-infiltrating immune cells in multiple cancers. ENO1 expression and its influence on tumor stage and clinical prognosis were analyzed by UCSC Xena browser, Gene Expression Profiling Interactive Analysis (GEPIA), The Cancer Genome Atlas (TCGA), and GTEx Portal. The ENO1 mutation analysis was performed by cBio Portal, and demonstrated ENO1 mutation (1.8%) did not impact on tumor prognosis. The relationship between ENO1 expression and tumor immunity was analyzed by Tumor Immune Estimation Resource (TIMER) and GEPIA. The potential functions of ENO1 in pathways were investigated by Gene Set Enrichment Analysis. ENO1 expression was significantly different in tumor and corresponding normal tissues. ENO1 expression in multiple tumor tissues correlated with prognosis and stage. ENO1 showed correlation with immune infiltrates including B cells, CD8+ and CD4+ T cells, macrophages, neutrophils, and dendritic cells, and tumor purity. ENO1 was proved to be involved in DNA replication, cell cycle, apoptosis, glycolysis process, and other processes. These findings indicate that ENO1 is a potential prognostic biomarker that correlates with cancer progression immune infiltration.


2021 ◽  
Vol 10 ◽  
Author(s):  
Ji’an Yang ◽  
Qian Yang

Glioblastoma multiforme is the most common primary intracranial malignancy, but its etiology and pathogenesis are still unclear. With the deepening of human genome research, the research of glioma subtype screening based on core molecules has become more in-depth. In the present study, we screened out differentially expressed genes (DEGs) through reanalyzing the glioblastoma multiforme (GBM) datasets GSE90598 from the Gene Expression Omnibus (GEO), the GBM dataset TCGA-GBM and the low-grade glioma (LGG) dataset TCGA-LGG from the Cancer Genome Atlas (TCGA). A total of 150 intersecting DEGs were found, of which 48 were upregulated and 102 were downregulated. These DEGs from GSE90598 dataset were enriched using the overrepresentation method, and multiple enriched gene ontology (GO) function terms were significantly correlated with neural cell signal transduction. DEGs between GBM and LGG were analyzed by gene set enrichment analysis (GSEA), and the significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in synapse signaling and oxytocin signaling pathways. Then, a protein-protein interaction (PPI) network was constructed to assess the interaction of proteins encoded by the DEGs. MCODE identified 2 modules from the PPI network. The 11 genes with the highest degrees in module 1 were designated as core molecules, namely, GABRD, KCNC1, KCNA1, SYT1, CACNG3, OPALIN, CD163, HPCAL4, ANK3, KIF5A, and MS4A6A, which were mainly enriched in ionic signaling-related pathways. Survival analysis of the GSE83300 dataset verified the significant relationship between expression levels of the 11 core genes and survival. Finally, the core molecules of GBM and the DrugBank database were assessed by a hypergeometric test to identify 10 drugs included tetrachlorodecaoxide related to cancer and neuropsychiatric diseases. Further studies are required to explore these core genes for their potentiality in diagnosis, prognosis, and targeted therapy and explain the relationship among ionic signaling-related pathways, neuropsychiatric diseases and neurological tumors.


2021 ◽  
Author(s):  
Shan Yang ◽  
Wei Gao ◽  
Haoqi Wang ◽  
Xi Zhang ◽  
Yunzhe Mi ◽  
...  

Abstract Background: Breast cancer (BC) is the most frequently diagnosed cancer in women and is the second most common cancer among newly diagnosed cancers worldwide. Studies have shown that paired box 2 (PAX2) participates in the tumorigenesis of some cancer cells. However, the functions of PAX2 in the BC context are still unclear.Methods: Transcriptome expression profiles and clinicopathological information of BC were download from the TCGA database. Then the expression level and prognostic value in TCGA database were explored. Gene Set Enrichment Analysis (GSEA) and functional enrichment analysis were performed to investigate the functions and pathways of PAX2. Moreover, RT-qPCR was used to determine the expression of PAX2 in BC tissues, and the predictive value of PAX2 in clinical samples was assessed. CCK-8 assay was used to evaluate cell growth. The migration and invasion capacities of cells were assessed by wound healing assay and Transwell assay.Results: PAX2 was up-regulated in the TCGA-BC datasets. GSEA analysis suggested that PAX2 might be involved in the regulation of MAPK signaling pathways and so on. Moreover, PAX2 was overexpressed in BC tissues, and PAX2 expression was associated with menopause. PAX2 deficiency could inhibit the growth, migration, and invasion of BC cells.Conclusion: This study suggested that PAX2 was up-regulated in BC, which inhibited BC cell growth, migration, and invasion. Thus, PAX2 could be a potential therapeutic target for BC.


2020 ◽  
Vol 7 ◽  
Author(s):  
Saiyan Bian ◽  
Wenkai Ni ◽  
Mengqi Zhu ◽  
Qianqian Song ◽  
Jianping Zhang ◽  
...  

Purpose: N6-methyladenosine (m6A) RNA methylation has been implicated in various malignancies. This study aimed to identify the m6A methylation regulator-based prognostic signature for hepatocellular carcinoma (HCC) as well as provide candidate targets for HCC treatment.Methods: The least absolute shrinkage and selection operator (LASSO) analyses were performed to identify a risk signature in The Cancer Genome Atlas (TCGA) datasets. The risk signature was further validated in International Cancer Genome Consortium (ICGC) and Pan-Cancer Analysis of Whole Genomes (PCAWG) datasets. Following transfection of short hairpin RNA (shRNA) targeting YTHDF1, the biological activities of HCC cells were evaluated by Cell Counting Kit-8 (CCK-8), wound-healing, Transwell, flow cytometry, and xenograft tumor assays, respectively. The potential mechanisms mediated by YTHDF1 were predicted by overrepresentation enrichment analysis (ORA)/gene set enrichment analysis (GSEA) and validated by Western blotting.Results: Overexpression of m6A RNA methylation regulators was correlated with malignant clinicopathological characteristics of HCC patients. The Cox regression and LASSO analyses identified a risk signature with five m6A methylation regulators (KIAA1429, ZC3H13, YTHDF1, YTHDF2, and METTL3). In accordance with HCC cases in TCGA, the prognostic value of risk signature was also determined in ICGC and PCAWG datasets. Following analyzing the expression and clinical implications in TCGA and Gene Expression Omnibus (GEO), YTHDF1 was chosen for further experimental validation. Knockdown of YTHDF1 significantly inhibited the proliferation, migration, and invasion of HCC cells, as well as enhanced the apoptosis in vitro. Moreover, silencing YTHDF1 repressed the growth of xenograft tumors in vivo. Mechanism investigation indicated that YTHDF1 might promote the aggressive phenotypes by facilitating epithelial–mesenchymal transition (EMT) and activating AKT/glycogen synthase kinase (GSK)-3β/β-catenin signaling.Conclusion: The current study identified a robust risk signature consisting of m6A RNA methylation regulators for HCC prognosis. In addition, YTHDF1 was a potential molecular target for HCC treatment.


2019 ◽  
Vol 9 (6) ◽  
pp. 789-796
Author(s):  
Hui Cai ◽  
Hongmei Deng

Background: Emerging evidences have revealed that Long noncoding RNAs (LncRNAs) is crucial for cancer progression. Previous studies have elucidated that patients with higher LncRNA SPRY4IT1 was more advanced. This study aims to investigate the biological effects of LncRNA SPRY4-IT1 and preliminary explore the effects of LncRNA SPRY4-IT1 on cisplatin sensitivity. Materials and methods: Quantitative reverse transcriptase PCR was used to validate the expression of SPRY4IT1. Cell migration and invasion were detected by scratch test and Transwell assay. Cell cytometry was performed for cell apoptosis. The expression of proteins was evaluated by immunoblotting. The drug sensitivity was measured by CCK-8. Results: LncRNA SPRY4-IT1 was significantly expressed in cervical cancer cell lines compared to normal cells. Downregulation of LncRNA SPRY4-IT1 in cervical cancer cells suppress the cell viability, cell invasion and migration and promoted apoptosis. In addition, decreases of LncRNA SPRY4-IT1 enhanced the cisplatin sensitivity in cervical cell lines. Conclusion: LncRNA SPRY4-IT1 is a potential biomarker and therapy target for cervical cancer.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e16521-e16521
Author(s):  
Lekun Fang ◽  
Ziqing Yang ◽  
Shaomin Zou ◽  
Yunling Xie

e16521 Background: Actin-like 6A (ACTL6A), an actin-like protein, is a member of ATP-dependent SWI/SNF like BAF chromatin remodeling complexes. Previous reports revealed that ACTL6A was involved in varying cellular processes including chromatin remodeling, transcriptional regulation, vesicular transport, and nuclear migration. Nevertheless, its role and mechanism in Gastric Cancer (GC), the second leading causes of cancer-related death worldwide, has not been reported. To explore it, we found that ACTL6A inhibits ferroptosis of GC cells via regulating glutathione (GSH) metabolism. Ferroptosis is a regulated form of cell death driven by accumulation of lipid-based reactive oxygen species (ROS). Methods: GC cell line snu638 was used for studies. Firstly, silencing ACTL6A in snu638 with shRNA, cell proliferation was measured by counting cell confluence in incucyte. Overlapping the Gene Set Enrichment Analysis (GSEA) results of RNA-sequencing and two databases, we found that ACTL6A is positively correlated with GSH metabolism, which can be validated by real time-PCR. Next, cells were treated with ferrostatin-1 (fer-1), a ferroptosis inhibitor, to check if ACTL6A can inhibit ferroptosis. Finally, 13C-glucose and 13C-glutamine were used for tracing the metabolites in snu638, which were measured by LC-MS system. Results: Suppression of ACTL6A significantly inhibits GC cell growth. In our RNA-sequence results, ACTL6A is positively correlated with GSH metabolism, which is also enrich in two GC databases. ROS level was increased after ACTL6A knockdown. Since ROS plays an important role in ferroptosis, we found that fer-1 can rescue cell death caused by suppression of ACTL6A. When tracing with 13C-glucose, total GSH and 13C incorporation from 13C-glucose in the m+2 and m+4 isotopomer of GSH is reduced when ACTL6A is depleted, while total contribution of U-13C glucose to serine, glycine and glutamate have no significant changes. When tracing with 13C-glutamine, m+5 fractional contributions of 13C-glutamine to γ-glutamyl-cysteine and GSH are decreased when silencing ACTL6A. These results reveal that ACTL6A promotes de novo GSH synthesis. Conclusions: ACTL6A acts as an oncogene in GC via regulating GSH metabolism, and ferroptosis is inhibited for increasing GSH by ACTL6A, which highlights the importance of ACTL6A in GC metabolism and tumorigenesis. Therefore, ACTL6A could be a potential diagnosis marker or target gene of chemotherapy for GC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ming Gao ◽  
Xinzhuang Wang ◽  
Dayong Han ◽  
Enzhou Lu ◽  
Jian Zhang ◽  
...  

Glioblastoma multiforme (GBM) is the most aggressive primary tumor of the central nervous system. As biomedicine advances, the researcher has found the development of GBM is closely related to immunity. In this study, we evaluated the GBM tumor immunoreactivity and defined the Immune-High (IH) and Immune-Low (IL) immunophenotypes using transcriptome data from 144 tumors profiled by The Cancer Genome Atlas (TCGA) project based on the single-sample gene set enrichment analysis (ssGSEA) of five immune expression signatures (IFN-γ response, macrophages, lymphocyte infiltration, TGF-β response, and wound healing). Next, we identified six immunophenotype-related long non-coding RNA biomarkers (im-lncRNAs, USP30-AS1, HCP5, PSMB8-AS1, AL133264.2, LINC01684, and LINC01506) by employing a machine learning computational framework combining minimum redundancy maximum relevance algorithm (mRMR) and random forest model. Moreover, the expression level of identified im-lncRNAs was converted into an im-lncScore using the normalized principal component analysis. The im-lncScore showed a promising performance for distinguishing the GBM immunophenotypes with an area under the curve (AUC) of 0.928. Furthermore, the im-lncRNAs were also closely associated with the levels of tumor immune cell infiltration in GBM. In summary, the im-lncRNA signature had important clinical implications for tumor immunophenotyping and guiding immunotherapy in glioblastoma patients in future.


Author(s):  
Si Cheng ◽  
Zhe Li ◽  
Wenhao Zhang ◽  
Zhiqiang Sun ◽  
Zhigang Fan ◽  
...  

Skin cutaneous melanoma (SKCM) is the major cause of death for skin cancer patients, its high metastasis often leads to poor prognosis of patients with malignant melanoma. However, the molecular mechanisms underlying metastatic melanoma remain to be elucidated. In this study we aim to identify and validate prognostic biomarkers associated with metastatic melanoma. We first construct a co-expression network using large-scale public gene expression profiles from GEO, from which candidate genes are screened out using weighted gene co-expression network analysis (WGCNA). A total of eight modules are established via the average linkage hierarchical clustering, and 111 hub genes are identified from the clinically significant modules. Next, two other datasets from GEO and TCGA are used for further screening of biomarker genes related to prognosis of metastatic melanoma, and identified 11 key genes via survival analysis. We find that IL10RA has the highest correlation with clinically important modules among all identified biomarker genes. Further in vitro biochemical experiments, including CCK8 assays, wound-healing assays and transwell assays, have verified that IL10RA can significantly inhibit the proliferation, migration and invasion of melanoma cells. Furthermore, gene set enrichment analysis shows that PI3K-AKT signaling pathway is significantly enriched in metastatic melanoma with highly expressed IL10RA, indicating that IL10RA mediates in metastatic melanoma via PI3K-AKT pathway.


Sign in / Sign up

Export Citation Format

Share Document