scholarly journals MCP-1 and MIP-3α Secreted from Necrotic Cell-Treated Glioblastoma Cells Promote Migration/Infiltration of Microglia

2018 ◽  
Vol 48 (3) ◽  
pp. 1332-1346 ◽  
Author(s):  
Yieun Jung ◽  
So-Hee Ahn ◽  
Hyunju Park ◽  
Sang Hui Park ◽  
Kyungsun Choi ◽  
...  

Background/Aims: Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The defining characteristics of GBM are diffuse infiltration of tumor cells into normal brain parenchyma, rapid growth, a high degree of infiltration of microglia and macrophages, and the presence of necrosis. Microglia/macrophages are frequently found in gliomas and they extensively infiltrate GBM tissue, up to 30% of total tumor mass. However, little is known about the effect of necrotic cells (NCs) on microglia infiltration in GBM and the tumor-infiltrating microglia-induced factors in GBMs. Methods: In this study, to address whether necrosis or necrosis-exposed GBM cells affect the degree of microglia/macrophage infiltration, migration and invasion/infiltration assays were performed. Culture supernatants and nuclear extracts of CRT-MG cells treated or untreated with necrotic cells were analyzed using a chemokine array and electrophoretic mobility shift assay, respectively. Results: The presence of NCs promoted the migration/infiltration of microglia, and GBM cell line CRT-MG cells exposed to NCs further enhanced the migration and infiltration of HMO6 microglial cells. Treatment with NCs induced mRNA and protein expression of chemokines such as <unterline>M</unterline>onocyte <unterline>C</unterline>hemoattractant <unterline>P</unterline>rotein-1 (CCL2/MCP-1) and <unterline>M</unterline>acrophage <unterline>I</unterline>nflammatory <unterline>P</unterline>rotein-3α (CCL20/MIP-3α) in CRT-MG cells. In particular, CCL2/MCP-1 and CCL20/MIP-3α were significantly increased in NC-treated CRT-MG cells. NCs induced DNA binding of the transcription factors <unterline>N</unterline>uclear <unterline>F</unterline>actor (NF)-κB and <unterline>A</unterline>ctivator <unterline>P</unterline>rotein 1 (AP-1) to the CCL2/MCP-1 and CCL20/MIP-3α promoters, leading to increased CCL2/MCP-1 and CCL20/MIP-3α mRNA and protein expression in CRT-MG cells. Conclusion: These results provide evidence that NCs induce the expression of CCL2/MCP-1 and CCL20/MIP-3α in glioblastoma cells through activation of NF-κB and AP-1 and facilitate the infiltration of microglia into tumor tissues.

2018 ◽  
Vol 17 (7) ◽  
pp. 557-567 ◽  
Author(s):  
Hua-Fu Zhao ◽  
Gang Wang ◽  
Chang-Peng Wu ◽  
Xiu-Ming Zhou ◽  
Jing Wang ◽  
...  

Background: Glioblastoma multiforme (GBM) is the most aggressive and malignant primary brain tumor characterized by rapid growth and extensive infiltration to neighboring normal brain parenchyma, which contribute to tumor recurrence and poor prognosis. Myricetin is a natural flavonoid with potent anti-oxidant, anti-inflammatory and anti-cancer activities, which may serve as a potential and harmless agent for GBM treatment. Methods: To investigate the anti-glioblastoma effects of myricetin, GBM cells were treated with myricetin alone or in combination with temozolomide. Its effects on GBM cell motility and cytoskeletal structures including lamellipodia, focal adhesions and membrane ruffles were also evaluated. Results: We showed that myricetin alone inhibited glioblastoma U-87 MG cell proliferation, migration and invasion, whereas combination of myricetin and temozolomide did not exhibit any synergistic effect. The inhibitory effect on GBM cell proliferation is independent of PTEN status. Moreover, myricetin showed less cytotoxicity to normal astrocytes than GBM cells. Formation of lamellipodia, focal adhesions, membrane ruffles and vasculogenic mimicry were blocked by myricetin, and phosphorylation of ROCK2, paxillin and cortactin was suppressed. In addition, myricetin could inhibit PI3K/Akt and JNK signaling, and bind to a series of kinases and scaffold proteins including PI3K catalytic isoforms (p110α, p110β and p110δ), PDK1, JNK, c-Jun, ROCK2, paxillin, vinculin and VEcadherin. Conclusions: In conclusion, myricetin is a multi-targeted drug that has potent anti-migratory and antiinvasive effects on GBM cells, and suppresses formation of lamellipodia and focal adhesions, suggesting that it may serve as an alternative option for GBM treatment.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yanping Li ◽  
Shanshan Wang ◽  
Xiaoyuan Zhang ◽  
Rui Yang ◽  
Xiaonan Wei ◽  
...  

It was proven that PGK1 plays a vital role in the proliferation, migration, and invasion of human breast cancer. However, the correlation of PGK1 mRNA and protein expression with clinicopathologic characteristics and prognostic values according to various kinds of breast cancer patient classifications remains unsufficient. Here, we analyzed data from the Oncomine database, Breast cancer Gene-Expression Miner v4.5, TNMplot, MuTarget, PrognoScan database, and clinical bioinformatics to investigate PGK1 expression distribution and prognostic value in breast cancer patients. Our study revealed that the mRNA and protein expression levels of PGK1 were up-regulated in various clinicopathologic types of breast cancer. Moreover, the expression of PGK1 was correlated with mutations of common tumor suppressor genes TP53 and CDH1. In addition, we found that high mRNA level of PGK1 was significantly associated with poor OS, RFS, and DMFS. Notably, Cox regressionanalysis showed that PGK1 could be used as an independent prognostic marker. In summary, the aforementioned findings suggested that PGK1 might be not only explored as a potential biomarker, but also combined with TP53/CDH1 for chemotherapy in breast cancer.


2020 ◽  
Author(s):  
yutao guan ◽  
Fu-bin Zhang ◽  
Yan-qing Huang ◽  
Ling-ling Zhou ◽  
Wei-feng Li ◽  
...  

Abstract Background: Endometriosis is a progressive and benign disease characterized by the presence of endometrial glands and stroma tissue outside of the uterine cavity. Though endometriosis is a benign disease, it has the characteristics of malignant tumour growth. Abnormal expression of T-cadherin is involved in the occurrence and progression of many tumours. We aimed to investigate whether T-cadherin promotes the migration and invasion of endometriosis cells through the PI3K/AKT/mTOR signaling pathway. Methods: Ectopic and eutopic endometrial samples from 62 female patients with endometriosis and endometrial samples from 51 female patients without endometriosis were collected. The immortalized endometrial stromal cell line hEM15A was cultured. Real-time RT-PCR, immunohistochemistry and Western blot were used to detect the expression of T-cadherin, phospho-PI3K/Akt/mTOR and matrix metalloproteinase 2 (MMP-2). Transfection technology was employed to upregulate T-cadherin expression. The migration and invasion abilities of hEM15A cells were measured by the transwell assay with uncoated or Matrigel-coated membranes. Results: The mRNA and protein expression of T-cadherin was significantly decresed in the ectopic tissues of the patients with endometriosis, while the mRNA and protein expression in the eutopic endometrial tissues of the same patients did not significantly differ from that in the patients without endometriosis. The migration and invasion ability and phospho-PI3K/Akt/mTOR and MMP-2 expression levels were decreased in hEM15A cells with high T-cadherin expression compared with the corresponding parameters in the normal control group. However, everolimus and BEZ235 inhibited cell migration and invasion in cells with low T-cadherin expression, and weakened overexpression of T‑cadherin significantly attenuated MMP-2 protein expression. Conclusion: Loss of T-cadherin promotes cell migration and invasion in endometriosis via the PI3K/AKT/mTOR signalling pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ruichuang Yang ◽  
Jianxia Wen ◽  
Tao Yang ◽  
Chunmei Dai ◽  
Yanling Zhao

Aims. In this study, the pharmacological effects and potential molecular mechanisms of evodiamine in treating gastric cancer (GC) were investigated. Methods. GC cells lines of AGS and BGC-823 were treated with evodiamine at various concentrations for different times (24, 48, and 72 h). Inhibition of the proliferation of AGS and BGC-823 cells was assessed using a CCK-8 assay. The morphology of gastric cancer cells was detected by high-content screening (HCS). The apoptosis-inducing effect of evodiamine on AGS and BGC-823 cells was detected by flow cytometric analysis. Cell migration and invasion were detected by Transwell assay. The relative mRNA and protein expression levels of PTEN-mediated EGF/PI3K signaling pathways were investigated via RT-qPCR or western blotting, respectively. Results. Evodiamine substantially inhibited AGS and BGC-823 cells proliferation in a dose- and time-dependent manner. Flow cytometric analysis revealed that evodiamine could induce apoptosis of AGS and BGC-823 cells in a dose-dependent manner. In addition, evodiamine inhibited AGS and BGC-823 cell migration and invasion. Mechanistically, the results demonstrated that evodiamine promoted the relative mRNA and protein expression of PTEN and decreased expression of EGF, EGFR, PI3K, AKT, p-AKT, and mTOR. Most importantly, evodiamine could effectively increase the mRNA and protein expression of PTEN and decrease the protein expression of EGF/PI3K pathway, indicating that evodiamine downregulated EGF/PI3K through the activation of PTEN pathway. Conclusion. Evodiamine inhibited the directional migration and invasion of GC cells by inhibiting PTEN-mediated EGF/PI3K signaling pathway. These findings revealed that evodiamine might serve as a potential candidate for the treatment or prevention of GC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hua-fu Zhao ◽  
Chang-peng Wu ◽  
Xiu-ming Zhou ◽  
Peng-yu Diao ◽  
Yan-wen Xu ◽  
...  

Abstract Background Glioblastoma multiforme, the most aggressive and malignant primary brain tumor, is characterized by rapid growth and extensive infiltration to neighboring normal brain parenchyma. Our previous studies delineated a crosstalk between PI3K/Akt and JNK signaling pathways, and a moderate anti-glioblastoma synergism caused by the combined inhibition of PI3K p110β (PI3Kβ) isoform and JNK. However, this combination strategy is not potent enough. MLK3, an upstream regulator of ERK and JNK, may replace JNK to exert stronger synergism with PI3Kβ. Methods To develop a new combination strategy with stronger synergism, the expression pattern and roles of MLK3 in glioblastoma patient’s specimens and cell lines were firstly investigated. Then glioblastoma cells and xenografts in nude mice were treated with the PI3Kβ inhibitor AZD6482 and the MLK3 inhibitor URMC-099 alone or in combination to evaluate their combination effects on tumor cell growth and motility. The combination effects on cytoskeletal structures such as lamellipodia and focal adhesions were also evaluated. Results MLK3 protein was overexpressed in both newly diagnosed and relapsing glioblastoma patients’ specimens. Silencing of MLK3 using siRNA duplexes significantly suppressed migration and invasion, but promoted attachment of glioblastoma cells. Combined inhibition of PI3Kβ and MLK3 exhibited synergistic inhibitory effects on glioblastoma cell proliferation, migration and invasion, as well as the formation of lamellipodia and focal adhesions. Furthermore, combination of AZD6482 and URMC-099 effectively decreased glioblastoma xenograft growth in nude mice. Glioblastoma cells treated with this drug combination showed reduced phosphorylation of Akt and ERK, and decreased protein expression of ROCK2 and Zyxin. Conclusion Taken together, combination of AZD6482 and URMC-099 showed strong synergistic anti-tumor effects on glioblastoma in vitro and in vivo. Our findings suggest that combined inhibition of PI3Kβ and MLK3 may serve as an attractive therapeutic approach for glioblastoma multiforme.


2014 ◽  
Author(s):  
Matthieu Lê ◽  
Hervé Delingette ◽  
Jayashree Kalpathy-cramer ◽  
Elizabeth Gerstner ◽  
Helen Shih ◽  
...  

Glioblastoma (GBM) is the most common type of primary brain tumor, which is characterized by an infiltrative growth pattern. In current practice, radiotherapy planning is primarily based upon T2 FLAIR MRI despite its known lack of specificity in the detection of tu- mor infiltration. While hyperintensity on T2 FLAIR is widely considered to represent infiltrative tumor, it may also be caused by the presence of vasogenic edema (VE), caused by a leakage of fluid into the brain parenchyma. Distinguishing VE from infiltrative tumor could have im- pact on improving radiotherapy planning. In this paper we study a data set of 17 GBM patients treated with anti-angiogenic therapy for which a fast decrease of T2 FLAIR hypersignal is observed, which indicates the resolution of VE. We investigate if multimodal MRI acquisitions in- cluding diffusion tensor imaging can distinguish between VE and tumor infiltration prior to therapy. Using a random forest classifier, we show that, in this study, morphological information based on the contrast en- hanced T1 image explains up to 75% of the extent of VE. The information from different imaging modalities did not significantly improve the clas- sification. We then show that delineating the VE prior to therapy can have substantial impact on radiotherapy target delineation, leading to smaller treatment volumes and reducing potentially harmful radiation dose to normal brain tissue.


2018 ◽  
Vol 46 (1) ◽  
pp. 93-106 ◽  
Author(s):  
Cheng-Liang Yang ◽  
Xiao-Li Zheng ◽  
Ke Ye ◽  
Hong Ge ◽  
Ya-Nan Sun ◽  
...  

Backgrounds/Aims: MicroRNAs (miRs) often contribute to the progression of non-small cell lung cancer (NSCLC) via regulation of mRNAs that are involved in lung homeostasis. We conducted a study aimed at exploring the roles of miR-183 in the proliferation, epithelial-mesenchymal transition (EMT), invasion and migration of human NSCLC cells via targeting MTA1. Methods: NSCLC and adjacent normal tissues were collected from 194 patients with NSCLC. Positive expression of MTA1 protein was detected by immunohistochemistry. The highest levels of expression of miR-183 were detected using RT-qPCR in SPC-A-1 cells, which were selected and assigned to the following groups: blank, negative control (NC), miR-183 mimic, miR-183 inhibitor, siRNA-MTA1, and miR-183 inhibitor + siRNA-MTA1. The expression of miR-183 and the mRNA and protein expression of MTA1, E-cadherin, Vimentin, Snail, PCNA, Bax and Bcl-2 in tissues and transfected cells were measured using RT-qPCR and western blot analysis. Cell proliferation, apoptosis, migration and invasion were evaluated by CCK-8, flow cytometry, scratch tests and Transwell assays. Tumor xenografts were conducted in nude mice to determine tumor growth. Results: SPC-A-1 cells with the highest levels of miR-183 expression were selected. Compared with adjacent normal tissues, the expression of miR-183 and the mRNA and protein expression of E-cadherin and Bax were decreased in NSCLC tissues, while mRNA and protein expression of MTA1, Vimentin, snail, PCNA and Bcl-2 were increased. MiR-183 was over-expressed in the miR-183 mimic group and under-expressed in the miR-183 inhibitor and miR-183 inhibitor + siRNA-MTA1 groups. In the miR-183 mimic and siRNA-MTA1 groups, the mRNA and protein expression of E-cadherin and Bax, as well as cell apoptosis, were enhanced, while the expression levels of MTA1, Vimentin, snail, PCNA and Bcl-2 mRNA and protein, cell proliferation, migration, invasion and tumor growth were reduced relative to the blank and NC groups. The miR-183 inhibitor group exhibited an opposite trend. Conclusion: Our study indicates that miR-183 down-regulates MTA1 to inhibit the proliferation, EMT, migration and invasion of human NSCLC cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ying Kao ◽  
Wen-Chiuan Tsai ◽  
Ssu-Han Chen ◽  
Shao-Yuan Hsu ◽  
Li-Chun Huang ◽  
...  

AbstractGlioblastomas are the most common type of adult primary brain neoplasms. Clinically, it is helpful to identify biomarkers to predict the survival of patients with gliomas due to its poor outcome. Shugoshin 2 (SGO2) is critical in cell division and cell cycle progression in eukaryotes. However, the association of SGO2 with pathological grading and survival in patients with gliomas remains unclear. We analyzed the association between SGO2 expression and clinical outcomes from Gene Expression Omnibus (GEO) dataset profiles, The Cancer Genome Atlas (TCGA), and Chinese Glioma Genome Atlas (CGGA). SGO2 mRNA and protein expression in normal brain tissue and glioma cell lines were investigated via quantitative RT-PCR, Western blot, and IHC staining. The roles of SGO2 in proliferation, migration, and apoptosis of GBM cells were studied with wound-healing assay, BrdU assay, cell cycle analysis, and JC-1 assay. The protein–protein interaction (PPI) was analyzed via Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). SGO2 mRNA expression predicted higher grade gliomas than non-tumor brain tissues. Kaplan–Meier survival analysis showed that patients with high-grade gliomas with a higher SGO2 expression had worse survival outcomes. SGO2 mRNA and protein expression were upper regulated in gliomas than in normal brain tissue. Inhibition of SGO2 suppressed cell proliferation and migration. Also, PPI result showed SGO2 to be a potential hub protein, which was related to the expression of AURKB and FOXM1. SGO2 expression positively correlates with WHO pathological grading and patient survival, suggesting that SGO2 is a biomarker that is predictive of disease progression in patients with gliomas.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Li Li ◽  
Qinghua Meng ◽  
Guoying Li ◽  
Limei Zhao

Objective. Our research is designed to explore the function of brain acid soluble protein 1 (BASP1) in the progression of gastric cancer (GC) and its underlying molecular mechanisms. Methods. In this study, the expression of BASP1 was detected by quantitative real-time polymerase chain reaction (qRT-PCR) in both GC tissue and GC cells. The cell cloning, proliferation, apoptosis, migration, and invasion potential of AGS and HGC-27 cells were, respectively, determined using colony formation assay, 5-ethynyl-20-deoxyuridine (EDU) assay, flow cytometry, and Transwell assay. The protein expressions of Bax, caspase-3, Bcl-2, matrix metalloproteinases 2 (MMP-2), MMP-9, Wilms tumor 1 (WT1), Wnt, and β-catenin in AGS and HGC-27 cells were measured by western blot. In addition, the mRNA expressions of WT1, Wnt, and β-catenin in AGS and HGC-27 cells were detected by qRT-PCR. Results. BASP1 expression was significantly downregulated in both GC tissue and GC cells. BASP1 overexpression markedly repressed proliferation, migration, and invasion and facilitated apoptosis in AGS and HGC-27 cells. In addition, BASP1 overexpression notably promoted the protein expression of Bax and caspase-3 in AGS and HGC-27 cells and inhibited the expression of Bcl-2, MMP-2, and MMP-9. Moreover, BASP1 overexpression significantly inhibited the mRNA and protein expression of WT1, Wnt, and β-catenin in AGS and HGC-27 cells. Conclusion. BASP1 could significantly suppress cell proliferation, migration, and invasion and promote apoptosis through inhibiting the activation of the Wnt/β-catenin pathway in GC.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5009-5009
Author(s):  
Rong Liang ◽  
Xiequn qun Chen ◽  
Qing xian Bai ◽  
Zhe Wang ◽  
Lan Yang ◽  
...  

Abstract Objectives Acute myeloid leukemia (AML) recurrence is largely a result of multidrug resistance (MDR). Because vincristine-resistant HL-60 cells (HL-60/VCR) express greater levels of 14-3-3¦Æ, which is associated with apoptosis and chemosensitivity in other cancers, this study sought to examine its role in AML chemosensitivity using HL-60 and HL-60/VCR cells. Methods The mRNA and protein expression of 14-3-3¦Æ, mdr1, Pgp, BCL-2 and MCL-1 were examined using semi-quantitative RT-PCR and Western blot analyses, respectively. The subcellular location of 14-3-3¦Æ protein in HL-60 and HL-60/VCR cells was determined using immunofluorescence and confocal microscopy. After siRNA-mediated silencing of 14-3-3¦Æ in HL-60 AND HL-60/VCR cells, cell growth and cell cycle progression were determined by direct counting and flow cytometry, respectively. The effect of 14-3-3¦Æ siRNA on topotecan (TPT)-induced apoptosis was evaluated using acridine orange/ethidium bromide and Annexin V staining as well as TUNEL analysis. NF-¦ÊB-DNA biding was also assessed using electrophoretic mobility shift assay. Results As compared to HL-60 cells, increased 14-3-3¦Æ mRNA and protein expression was observed in HL-60/VCR cells. In addition, increased mdr-1 mRNA as well as Pgp, Bcl-2, and Mcl-1 protein expression were observed in HL-60/VCR cells. In both HL-60 and HL-60/VCR cells, 14-3-3¦Æ was observed in the cytoplasm and nuclear compartments. 14-3-3¦Æ siRNA significantly reduced HL-60 and HL-60/VCR cell growth after 48 h and increased the proportion of cells in the G0/G1 phase. Moreover, 14-3-3¦Æ siRNA significantly increased the sensitivity of both HL-60 and HL-60/VCR cells to TPT possibly through inhibition of Bcl-2, Mcl-1 and Pgp protein expression. Conversely, increased Bad and Noxa protein expression was observed with 14-3-3¦Æ siRNA. NF-ĸB DNA binding was reduced with 14-3-3¦Æ siRNA. Conclusions Silencing of 14-3-3¦Æ increased the sensitivity of both sensitive and resistant HL-60 cells to TPT-induced apoptosis possibly through altering the expression of apoptosis-associated proteins, suggesting that it may be a potential target for MDR AML. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document